#!/usr/bin/env python import numpy as np import cv2 import sys # Read points from text file def readPoints(path) : # Create an array of points. points = []; # Read points with open(path) as file : for line in file : x, y = line.split() points.append((int(x), int(y))) return points # Apply affine transform calculated using srcTri and dstTri to src and # output an image of size. def applyAffineTransform(src, srcTri, dstTri, size) : # Given a pair of triangles, find the affine transform. warpMat = cv2.getAffineTransform( np.float32(srcTri), np.float32(dstTri) ) # Apply the Affine Transform just found to the src image dst = cv2.warpAffine( src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101 ) return dst # Warps and alpha blends triangular regions from img1 and img2 to img def morphTriangle(img1, img2, img, t1, t2, t, alpha) : # Find bounding rectangle for each triangle r1 = cv2.boundingRect(np.float32([t1])) r2 = cv2.boundingRect(np.float32([t2])) r = cv2.boundingRect(np.float32([t])) # Offset points by left top corner of the respective rectangles t1Rect = [] t2Rect = [] tRect = [] for i in xrange(0, 3): tRect.append(((t[i][0] - r[0]),(t[i][1] - r[1]))) t1Rect.append(((t1[i][0] - r1[0]),(t1[i][1] - r1[1]))) t2Rect.append(((t2[i][0] - r2[0]),(t2[i][1] - r2[1]))) # Get mask by filling triangle mask = np.zeros((r[3], r[2], 3), dtype = np.float32) cv2.fillConvexPoly(mask, np.int32(tRect), (1.0, 1.0, 1.0), 16, 0); # Apply warpImage to small rectangular patches img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]] img2Rect = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] size = (r[2], r[3]) warpImage1 = applyAffineTransform(img1Rect, t1Rect, tRect, size) warpImage2 = applyAffineTransform(img2Rect, t2Rect, tRect, size) # Alpha blend rectangular patches imgRect = (1.0 - alpha) * warpImage1 + alpha * warpImage2 # Copy triangular region of the rectangular patch to the output image img[r[1]:r[1]+r[3], r[0]:r[0]+r[2]] = img[r[1]:r[1]+r[3], r[0]:r[0]+r[2]] * ( 1 - mask ) + imgRect * mask if __name__ == '__main__' : filename1 = 'hillary_clinton.jpg' filename2 = 'ted_cruz.jpg' alpha = 0.5 # Read images img1 = cv2.imread(filename1); img2 = cv2.imread(filename2); # Convert Mat to float data type img1 = np.float32(img1) img2 = np.float32(img2) # Read array of corresponding points points1 = readPoints('coordinates1.txt') points2 = readPoints('coordinates2.txt') points = []; # Compute weighted average point coordinates for i in xrange(0, len(points1)): x = ( 1 - alpha ) * points1[i][0] + alpha * points2[i][0] y = ( 1 - alpha ) * points1[i][1] + alpha * points2[i][1] points.append((x,y)) # Allocate space for final output imgMorph = np.zeros(img1.shape, dtype = img1.dtype) # Read triangles from tri.txt with open("tri.txt") as file : for line in file : x,y,z = line.split() x = int(x) y = int(y) z = int(z) t1 = [points1[x], points1[y], points1[z]] t2 = [points2[x], points2[y], points2[z]] t = [points[x], points[y], points[z]] # Morph one triangle at a time. morphTriangle(img1, img2, imgMorph, t1, t2, t, alpha) # Display Result #cv2.imshow("Morphed Face", np.uint8(imgMorph)) cv2.imwrite('Morphed.jpg',imgMorph) cv2.waitKey(0)