Spaces:
Running
Running
ali-ghamdan
commited on
Commit
·
fac6837
1
Parent(s):
fd11662
add files -.-
Browse files- app.py +32 -0
- colorizers/__init__.py +6 -0
- colorizers/__pycache__/__init__.cpython-310.pyc +0 -0
- colorizers/__pycache__/__init__.cpython-37.pyc +0 -0
- colorizers/__pycache__/base_color.cpython-310.pyc +0 -0
- colorizers/__pycache__/base_color.cpython-37.pyc +0 -0
- colorizers/__pycache__/eccv16.cpython-310.pyc +0 -0
- colorizers/__pycache__/eccv16.cpython-37.pyc +0 -0
- colorizers/__pycache__/siggraph17.cpython-310.pyc +0 -0
- colorizers/__pycache__/siggraph17.cpython-37.pyc +0 -0
- colorizers/__pycache__/util.cpython-310.pyc +0 -0
- colorizers/__pycache__/util.cpython-37.pyc +0 -0
- colorizers/base_color.py +24 -0
- colorizers/eccv16.py +105 -0
- colorizers/siggraph17.py +168 -0
- colorizers/util.py +47 -0
- demo_release.py +56 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import colorizers as c
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from colorizers.util import postprocess_tens, preprocess_img
|
7 |
+
|
8 |
+
def interface(image: Image, model: str):
|
9 |
+
if model == "eccv16":
|
10 |
+
img = c.eccv16(pretrained=True).eval()
|
11 |
+
else:
|
12 |
+
img = c.siggraph17(pretrained=True).eval()
|
13 |
+
oimg = np.asarray(image)
|
14 |
+
if(oimg.ndim == 2):
|
15 |
+
oimg = np.tile(oimg[:,:,None], 3)
|
16 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(oimg)
|
17 |
+
|
18 |
+
output_img = postprocess_tens(
|
19 |
+
tens_l_orig,
|
20 |
+
img(tens_l_rs).cpu()
|
21 |
+
)
|
22 |
+
return output_img
|
23 |
+
|
24 |
+
gr.Interface(
|
25 |
+
interface,
|
26 |
+
[
|
27 |
+
gr.inputs.Image(type="pil", label="Image"),
|
28 |
+
gr.inputs.Radio([
|
29 |
+
"eccv16", "siggraph17"
|
30 |
+
], type="value", default="eccv16", label="Model")
|
31 |
+
]
|
32 |
+
)
|
colorizers/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .base_color import *
|
3 |
+
from .eccv16 import *
|
4 |
+
from .siggraph17 import *
|
5 |
+
from .util import *
|
6 |
+
|
colorizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (229 Bytes). View file
|
|
colorizers/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (285 Bytes). View file
|
|
colorizers/__pycache__/base_color.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
colorizers/__pycache__/base_color.cpython-37.pyc
ADDED
Binary file (1.24 kB). View file
|
|
colorizers/__pycache__/eccv16.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
colorizers/__pycache__/eccv16.cpython-37.pyc
ADDED
Binary file (3.26 kB). View file
|
|
colorizers/__pycache__/siggraph17.cpython-310.pyc
ADDED
Binary file (4.31 kB). View file
|
|
colorizers/__pycache__/siggraph17.cpython-37.pyc
ADDED
Binary file (4.36 kB). View file
|
|
colorizers/__pycache__/util.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|
colorizers/__pycache__/util.cpython-37.pyc
ADDED
Binary file (1.71 kB). View file
|
|
colorizers/base_color.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class BaseColor(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(BaseColor, self).__init__()
|
8 |
+
|
9 |
+
self.l_cent = 50.
|
10 |
+
self.l_norm = 100.
|
11 |
+
self.ab_norm = 110.
|
12 |
+
|
13 |
+
def normalize_l(self, in_l):
|
14 |
+
return (in_l-self.l_cent)/self.l_norm
|
15 |
+
|
16 |
+
def unnormalize_l(self, in_l):
|
17 |
+
return in_l*self.l_norm + self.l_cent
|
18 |
+
|
19 |
+
def normalize_ab(self, in_ab):
|
20 |
+
return in_ab/self.ab_norm
|
21 |
+
|
22 |
+
def unnormalize_ab(self, in_ab):
|
23 |
+
return in_ab*self.ab_norm
|
24 |
+
|
colorizers/eccv16.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from IPython import embed
|
6 |
+
|
7 |
+
from .base_color import *
|
8 |
+
|
9 |
+
class ECCVGenerator(BaseColor):
|
10 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
11 |
+
super(ECCVGenerator, self).__init__()
|
12 |
+
|
13 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
16 |
+
model1+=[nn.ReLU(True),]
|
17 |
+
model1+=[norm_layer(64),]
|
18 |
+
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
|
25 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
26 |
+
model3+=[nn.ReLU(True),]
|
27 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[norm_layer(256),]
|
32 |
+
|
33 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
34 |
+
model4+=[nn.ReLU(True),]
|
35 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
36 |
+
model4+=[nn.ReLU(True),]
|
37 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[norm_layer(512),]
|
40 |
+
|
41 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
42 |
+
model5+=[nn.ReLU(True),]
|
43 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
44 |
+
model5+=[nn.ReLU(True),]
|
45 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
46 |
+
model5+=[nn.ReLU(True),]
|
47 |
+
model5+=[norm_layer(512),]
|
48 |
+
|
49 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
50 |
+
model6+=[nn.ReLU(True),]
|
51 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
52 |
+
model6+=[nn.ReLU(True),]
|
53 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
54 |
+
model6+=[nn.ReLU(True),]
|
55 |
+
model6+=[norm_layer(512),]
|
56 |
+
|
57 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
58 |
+
model7+=[nn.ReLU(True),]
|
59 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
60 |
+
model7+=[nn.ReLU(True),]
|
61 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
62 |
+
model7+=[nn.ReLU(True),]
|
63 |
+
model7+=[norm_layer(512),]
|
64 |
+
|
65 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
66 |
+
model8+=[nn.ReLU(True),]
|
67 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
68 |
+
model8+=[nn.ReLU(True),]
|
69 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
70 |
+
model8+=[nn.ReLU(True),]
|
71 |
+
|
72 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
73 |
+
|
74 |
+
self.model1 = nn.Sequential(*model1)
|
75 |
+
self.model2 = nn.Sequential(*model2)
|
76 |
+
self.model3 = nn.Sequential(*model3)
|
77 |
+
self.model4 = nn.Sequential(*model4)
|
78 |
+
self.model5 = nn.Sequential(*model5)
|
79 |
+
self.model6 = nn.Sequential(*model6)
|
80 |
+
self.model7 = nn.Sequential(*model7)
|
81 |
+
self.model8 = nn.Sequential(*model8)
|
82 |
+
|
83 |
+
self.softmax = nn.Softmax(dim=1)
|
84 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
85 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
86 |
+
|
87 |
+
def forward(self, input_l):
|
88 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
89 |
+
conv2_2 = self.model2(conv1_2)
|
90 |
+
conv3_3 = self.model3(conv2_2)
|
91 |
+
conv4_3 = self.model4(conv3_3)
|
92 |
+
conv5_3 = self.model5(conv4_3)
|
93 |
+
conv6_3 = self.model6(conv5_3)
|
94 |
+
conv7_3 = self.model7(conv6_3)
|
95 |
+
conv8_3 = self.model8(conv7_3)
|
96 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
97 |
+
|
98 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
99 |
+
|
100 |
+
def eccv16(pretrained=True):
|
101 |
+
model = ECCVGenerator()
|
102 |
+
if(pretrained):
|
103 |
+
import torch.utils.model_zoo as model_zoo
|
104 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True))
|
105 |
+
return model
|
colorizers/siggraph17.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .base_color import *
|
5 |
+
|
6 |
+
class SIGGRAPHGenerator(BaseColor):
|
7 |
+
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
|
8 |
+
super(SIGGRAPHGenerator, self).__init__()
|
9 |
+
|
10 |
+
# Conv1
|
11 |
+
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
12 |
+
model1+=[nn.ReLU(True),]
|
13 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[norm_layer(64),]
|
16 |
+
# add a subsampling operation
|
17 |
+
|
18 |
+
# Conv2
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
# add a subsampling layer operation
|
25 |
+
|
26 |
+
# Conv3
|
27 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
32 |
+
model3+=[nn.ReLU(True),]
|
33 |
+
model3+=[norm_layer(256),]
|
34 |
+
# add a subsampling layer operation
|
35 |
+
|
36 |
+
# Conv4
|
37 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
40 |
+
model4+=[nn.ReLU(True),]
|
41 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
42 |
+
model4+=[nn.ReLU(True),]
|
43 |
+
model4+=[norm_layer(512),]
|
44 |
+
|
45 |
+
# Conv5
|
46 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
47 |
+
model5+=[nn.ReLU(True),]
|
48 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
49 |
+
model5+=[nn.ReLU(True),]
|
50 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
51 |
+
model5+=[nn.ReLU(True),]
|
52 |
+
model5+=[norm_layer(512),]
|
53 |
+
|
54 |
+
# Conv6
|
55 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
56 |
+
model6+=[nn.ReLU(True),]
|
57 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
58 |
+
model6+=[nn.ReLU(True),]
|
59 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
60 |
+
model6+=[nn.ReLU(True),]
|
61 |
+
model6+=[norm_layer(512),]
|
62 |
+
|
63 |
+
# Conv7
|
64 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
65 |
+
model7+=[nn.ReLU(True),]
|
66 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
67 |
+
model7+=[nn.ReLU(True),]
|
68 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
69 |
+
model7+=[nn.ReLU(True),]
|
70 |
+
model7+=[norm_layer(512),]
|
71 |
+
|
72 |
+
# Conv7
|
73 |
+
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
|
74 |
+
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
75 |
+
|
76 |
+
model8=[nn.ReLU(True),]
|
77 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
78 |
+
model8+=[nn.ReLU(True),]
|
79 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
80 |
+
model8+=[nn.ReLU(True),]
|
81 |
+
model8+=[norm_layer(256),]
|
82 |
+
|
83 |
+
# Conv9
|
84 |
+
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
85 |
+
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
86 |
+
# add the two feature maps above
|
87 |
+
|
88 |
+
model9=[nn.ReLU(True),]
|
89 |
+
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
90 |
+
model9+=[nn.ReLU(True),]
|
91 |
+
model9+=[norm_layer(128),]
|
92 |
+
|
93 |
+
# Conv10
|
94 |
+
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
95 |
+
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
96 |
+
# add the two feature maps above
|
97 |
+
|
98 |
+
model10=[nn.ReLU(True),]
|
99 |
+
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
|
100 |
+
model10+=[nn.LeakyReLU(negative_slope=.2),]
|
101 |
+
|
102 |
+
# classification output
|
103 |
+
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
104 |
+
|
105 |
+
# regression output
|
106 |
+
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
107 |
+
model_out+=[nn.Tanh()]
|
108 |
+
|
109 |
+
self.model1 = nn.Sequential(*model1)
|
110 |
+
self.model2 = nn.Sequential(*model2)
|
111 |
+
self.model3 = nn.Sequential(*model3)
|
112 |
+
self.model4 = nn.Sequential(*model4)
|
113 |
+
self.model5 = nn.Sequential(*model5)
|
114 |
+
self.model6 = nn.Sequential(*model6)
|
115 |
+
self.model7 = nn.Sequential(*model7)
|
116 |
+
self.model8up = nn.Sequential(*model8up)
|
117 |
+
self.model8 = nn.Sequential(*model8)
|
118 |
+
self.model9up = nn.Sequential(*model9up)
|
119 |
+
self.model9 = nn.Sequential(*model9)
|
120 |
+
self.model10up = nn.Sequential(*model10up)
|
121 |
+
self.model10 = nn.Sequential(*model10)
|
122 |
+
self.model3short8 = nn.Sequential(*model3short8)
|
123 |
+
self.model2short9 = nn.Sequential(*model2short9)
|
124 |
+
self.model1short10 = nn.Sequential(*model1short10)
|
125 |
+
|
126 |
+
self.model_class = nn.Sequential(*model_class)
|
127 |
+
self.model_out = nn.Sequential(*model_out)
|
128 |
+
|
129 |
+
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
|
130 |
+
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
|
131 |
+
|
132 |
+
def forward(self, input_A, input_B=None, mask_B=None):
|
133 |
+
if(input_B is None):
|
134 |
+
input_B = torch.cat((input_A*0, input_A*0), dim=1)
|
135 |
+
if(mask_B is None):
|
136 |
+
mask_B = input_A*0
|
137 |
+
|
138 |
+
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
|
139 |
+
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
|
140 |
+
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
|
141 |
+
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
|
142 |
+
conv5_3 = self.model5(conv4_3)
|
143 |
+
conv6_3 = self.model6(conv5_3)
|
144 |
+
conv7_3 = self.model7(conv6_3)
|
145 |
+
|
146 |
+
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
|
147 |
+
conv8_3 = self.model8(conv8_up)
|
148 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
149 |
+
conv9_3 = self.model9(conv9_up)
|
150 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
151 |
+
conv10_2 = self.model10(conv10_up)
|
152 |
+
out_reg = self.model_out(conv10_2)
|
153 |
+
|
154 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
155 |
+
conv9_3 = self.model9(conv9_up)
|
156 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
157 |
+
conv10_2 = self.model10(conv10_up)
|
158 |
+
out_reg = self.model_out(conv10_2)
|
159 |
+
|
160 |
+
return self.unnormalize_ab(out_reg)
|
161 |
+
|
162 |
+
def siggraph17(pretrained=True):
|
163 |
+
model = SIGGRAPHGenerator()
|
164 |
+
if(pretrained):
|
165 |
+
import torch.utils.model_zoo as model_zoo
|
166 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
|
167 |
+
return model
|
168 |
+
|
colorizers/util.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from skimage import color
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from IPython import embed
|
8 |
+
|
9 |
+
def load_img(img_path):
|
10 |
+
out_np = np.asarray(Image.open(img_path))
|
11 |
+
if(out_np.ndim==2):
|
12 |
+
out_np = np.tile(out_np[:,:,None],3)
|
13 |
+
return out_np
|
14 |
+
|
15 |
+
def resize_img(img, HW=(256,256), resample=3):
|
16 |
+
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
|
17 |
+
|
18 |
+
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
|
19 |
+
# return original size L and resized L as torch Tensors
|
20 |
+
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
|
21 |
+
|
22 |
+
img_lab_orig = color.rgb2lab(img_rgb_orig)
|
23 |
+
img_lab_rs = color.rgb2lab(img_rgb_rs)
|
24 |
+
|
25 |
+
img_l_orig = img_lab_orig[:,:,0]
|
26 |
+
img_l_rs = img_lab_rs[:,:,0]
|
27 |
+
|
28 |
+
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
|
29 |
+
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
|
30 |
+
|
31 |
+
return (tens_orig_l, tens_rs_l)
|
32 |
+
|
33 |
+
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
|
34 |
+
# tens_orig_l 1 x 1 x H_orig x W_orig
|
35 |
+
# out_ab 1 x 2 x H x W
|
36 |
+
|
37 |
+
HW_orig = tens_orig_l.shape[2:]
|
38 |
+
HW = out_ab.shape[2:]
|
39 |
+
|
40 |
+
# call resize function if needed
|
41 |
+
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
|
42 |
+
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
|
43 |
+
else:
|
44 |
+
out_ab_orig = out_ab
|
45 |
+
|
46 |
+
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
|
47 |
+
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
|
demo_release.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import argparse
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from colorizers import *
|
6 |
+
|
7 |
+
parser = argparse.ArgumentParser()
|
8 |
+
parser.add_argument('-i','--img_path', type=str, default='imgs/ansel_adams3.jpg')
|
9 |
+
parser.add_argument('--use_gpu', action='store_true', help='whether to use GPU')
|
10 |
+
parser.add_argument('-o','--save_prefix', type=str, default='saved', help='will save into this file with {eccv16.png, siggraph17.png} suffixes')
|
11 |
+
opt = parser.parse_args()
|
12 |
+
|
13 |
+
# load colorizers
|
14 |
+
colorizer_eccv16 = eccv16(pretrained=True).eval()
|
15 |
+
colorizer_siggraph17 = siggraph17(pretrained=True).eval()
|
16 |
+
if(opt.use_gpu):
|
17 |
+
colorizer_eccv16.cuda()
|
18 |
+
colorizer_siggraph17.cuda()
|
19 |
+
|
20 |
+
# default size to process images is 256x256
|
21 |
+
# grab L channel in both original ("orig") and resized ("rs") resolutions
|
22 |
+
img = load_img(opt.img_path)
|
23 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256,256))
|
24 |
+
if(opt.use_gpu):
|
25 |
+
tens_l_rs = tens_l_rs.cuda()
|
26 |
+
|
27 |
+
# colorizer outputs 256x256 ab map
|
28 |
+
# resize and concatenate to original L channel
|
29 |
+
img_bw = postprocess_tens(tens_l_orig, torch.cat((0*tens_l_orig,0*tens_l_orig),dim=1))
|
30 |
+
out_img_eccv16 = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())
|
31 |
+
out_img_siggraph17 = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())
|
32 |
+
|
33 |
+
plt.imsave('%s_eccv16.png'%opt.save_prefix, out_img_eccv16)
|
34 |
+
plt.imsave('%s_siggraph17.png'%opt.save_prefix, out_img_siggraph17)
|
35 |
+
|
36 |
+
plt.figure(figsize=(12,8))
|
37 |
+
plt.subplot(2,2,1)
|
38 |
+
plt.imshow(img)
|
39 |
+
plt.title('Original')
|
40 |
+
plt.axis('off')
|
41 |
+
|
42 |
+
plt.subplot(2,2,2)
|
43 |
+
plt.imshow(img_bw)
|
44 |
+
plt.title('Input')
|
45 |
+
plt.axis('off')
|
46 |
+
|
47 |
+
plt.subplot(2,2,3)
|
48 |
+
plt.imshow(out_img_eccv16)
|
49 |
+
plt.title('Output (ECCV 16)')
|
50 |
+
plt.axis('off')
|
51 |
+
|
52 |
+
plt.subplot(2,2,4)
|
53 |
+
plt.imshow(out_img_siggraph17)
|
54 |
+
plt.title('Output (SIGGRAPH 17)')
|
55 |
+
plt.axis('off')
|
56 |
+
plt.show()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
scikit-image
|
3 |
+
numpy
|
4 |
+
PIL
|