AutoGPT / autogpt /agent /agent.py
Ali Abid
first commit
0534c31
raw
history blame
8.48 kB
from colorama import Fore, Style
from autogpt.app import execute_command, get_command
from autogpt.chat import chat_with_ai, create_chat_message
from autogpt.config import Config
from autogpt.json_utils.json_fix_llm import fix_json_using_multiple_techniques
from autogpt.json_utils.utilities import validate_json
from autogpt.logs import logger, print_assistant_thoughts
from autogpt.speech import say_text
from autogpt.spinner import Spinner
from autogpt.utils import clean_input
class Agent:
"""Agent class for interacting with Auto-GPT.
Attributes:
ai_name: The name of the agent.
memory: The memory object to use.
full_message_history: The full message history.
next_action_count: The number of actions to execute.
system_prompt: The system prompt is the initial prompt that defines everything the AI needs to know to achieve its task successfully.
Currently, the dynamic and customizable information in the system prompt are ai_name, description and goals.
triggering_prompt: The last sentence the AI will see before answering. For Auto-GPT, this prompt is:
Determine which next command to use, and respond using the format specified above:
The triggering prompt is not part of the system prompt because between the system prompt and the triggering
prompt we have contextual information that can distract the AI and make it forget that its goal is to find the next task to achieve.
SYSTEM PROMPT
CONTEXTUAL INFORMATION (memory, previous conversations, anything relevant)
TRIGGERING PROMPT
The triggering prompt reminds the AI about its short term meta task (defining the next task)
"""
def __init__(
self,
ai_name,
memory,
full_message_history,
next_action_count,
system_prompt,
triggering_prompt,
):
self.ai_name = ai_name
self.memory = memory
self.full_message_history = full_message_history
self.next_action_count = next_action_count
self.system_prompt = system_prompt
self.triggering_prompt = triggering_prompt
def start_interaction_loop(self):
# Interaction Loop
cfg = Config()
loop_count = 0
command_name = None
arguments = None
user_input = ""
while True:
# Discontinue if continuous limit is reached
loop_count += 1
if (
cfg.continuous_mode
and cfg.continuous_limit > 0
and loop_count > cfg.continuous_limit
):
logger.typewriter_log(
"Continuous Limit Reached: ", Fore.YELLOW, f"{cfg.continuous_limit}"
)
break
# Send message to AI, get response
with Spinner("Thinking... "):
assistant_reply = chat_with_ai(
self.system_prompt,
self.triggering_prompt,
self.full_message_history,
self.memory,
cfg.fast_token_limit,
) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
assistant_reply_json = fix_json_using_multiple_techniques(assistant_reply)
# Print Assistant thoughts
if assistant_reply_json != {}:
validate_json(assistant_reply_json, "llm_response_format_1")
# Get command name and arguments
try:
print_assistant_thoughts(self.ai_name, assistant_reply_json)
command_name, arguments = get_command(assistant_reply_json)
# command_name, arguments = assistant_reply_json_valid["command"]["name"], assistant_reply_json_valid["command"]["args"]
if cfg.speak_mode:
say_text(f"I want to execute {command_name}")
except Exception as e:
logger.error("Error: \n", str(e))
if not cfg.continuous_mode and self.next_action_count == 0:
### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
# Get key press: Prompt the user to press enter to continue or escape
# to exit
logger.typewriter_log(
"NEXT ACTION: ",
Fore.CYAN,
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} "
f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
)
print(
"Enter 'y' to authorise command, 'y -N' to run N continuous "
"commands, 'n' to exit program, or enter feedback for "
f"{self.ai_name}...",
flush=True,
)
while True:
console_input = clean_input(
Fore.MAGENTA + "Input:" + Style.RESET_ALL
)
if console_input.lower().strip() == "y":
user_input = "GENERATE NEXT COMMAND JSON"
break
elif console_input.lower().strip() == "":
print("Invalid input format.")
continue
elif console_input.lower().startswith("y -"):
try:
self.next_action_count = abs(
int(console_input.split(" ")[1])
)
user_input = "GENERATE NEXT COMMAND JSON"
except ValueError:
print(
"Invalid input format. Please enter 'y -n' where n is"
" the number of continuous tasks."
)
continue
break
elif console_input.lower() == "n":
user_input = "EXIT"
break
else:
user_input = console_input
command_name = "human_feedback"
break
if user_input == "GENERATE NEXT COMMAND JSON":
logger.typewriter_log(
"-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=",
Fore.MAGENTA,
"",
)
elif user_input == "EXIT":
print("Exiting...", flush=True)
break
else:
# Print command
logger.typewriter_log(
"NEXT ACTION: ",
Fore.CYAN,
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL}"
f" ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
)
# Execute command
if command_name is not None and command_name.lower().startswith("error"):
result = (
f"Command {command_name} threw the following error: {arguments}"
)
elif command_name == "human_feedback":
result = f"Human feedback: {user_input}"
else:
result = (
f"Command {command_name} returned: "
f"{execute_command(command_name, arguments)}"
)
if self.next_action_count > 0:
self.next_action_count -= 1
memory_to_add = (
f"Assistant Reply: {assistant_reply} "
f"\nResult: {result} "
f"\nHuman Feedback: {user_input} "
)
self.memory.add(memory_to_add)
# Check if there's a result from the command append it to the message
# history
if result is not None:
self.full_message_history.append(create_chat_message("system", result))
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result)
else:
self.full_message_history.append(
create_chat_message("system", "Unable to execute command")
)
logger.typewriter_log(
"SYSTEM: ", Fore.YELLOW, "Unable to execute command"
)