easyphoto / app.py
chywang's picture
Upload 10 files
0ee72aa
raw
history blame
16.5 kB
import os
import glob
import gradio as gr
import base64
import cv2
import numpy as np
import oss2
import time
from ai_service_python_sdk.client.api.ai_service_aigc_images_api import AIGCImagesApi
from ai_service_python_sdk.client.api.ai_service_job_api import AiServiceJobApi
from ai_service_python_sdk.client.api_client import ApiClient
from ai_service_python_sdk.test import appId, host, token
host = os.getenv("PAI_REC_HOST")
appId = os.getenv("PAI_REC_APP_ID")
token = os.getenv("PAI_REC_TOKEN")
access_key_id = os.getenv('OSS_ACCESS_KEY_ID')
access_key_secret = os.getenv('OSS_ACCESS_KEY_SECRET')
bucket_name = os.getenv('OSS_BUCKET')
endpoint = os.getenv('OSS_ENDPOINT')
def upload_file(files, current_files):
file_paths = [file_d['name'] for file_d in current_files] + [file.name for file in files]
return file_paths
def decode_image_from_base64jpeg(base64_image):
image_bytes = base64.b64decode(base64_image)
np_arr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
def upload(image_path, number):
bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name)
file_name = image_path.split('/')[-1]
ext = file_name.split('.')[-1]
file_name = str(number) + '.' + ext
timestamp = str(time.time()).split('.')[0]
bucket_folder = 'aigc-data/easyphoto_demo_data/' + timestamp + '_user_lora/'
oss_file_path = bucket_folder + file_name
bucket.put_object_from_file(oss_file_path, image_path)
file_url = 'https://' + bucket_name + '.' + endpoint + '/' + bucket_folder + file_name
return file_url
def upload_template(image_path):
bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name)
file_name = image_path.split('/')[-1]
timestamp = str(time.time()).split('.')[0]
bucket_folder = 'aigc-data/easyphoto_demo_data/' + timestamp + '_user_template/'
oss_file_path = bucket_folder + file_name
bucket.put_object_from_file(oss_file_path, image_path)
file_url = 'https://' + bucket_name + '.' + endpoint + '/' + bucket_folder + file_name
return file_url
def easyphoto_train(instance_images):
images = []
if instance_images is None or len(instance_images)==0:
output = 'Status: no image updated! 没有上传照片'
return output, [], []
for number, image in enumerate(instance_images):
image_path = image['name']
image_url = upload(image_path, number)
images.append(image_url)
client = ApiClient(host, appId, token)
api = AIGCImagesApi(client)
response = api.aigc_images_train(images, '', None)
message = response.message
model_id = response.data['model_id']
job_id = response.data['job_id']
if message == 'success':
state = 'training job submitted. 提交训练任务成功'
output = 'Status: ' + state
print("job id: " + str(job_id))
print("model id: " + str(model_id))
return output, job_id, model_id
else:
output = 'Status: submitting training job failed! 提交训练任务失败'
return output, [], []
def easyphoto_check(job_id):
client = ApiClient(host, appId, token)
api = AiServiceJobApi(client)
if job_id is None:
output = 'Status: checking training status failed! No job id. 状态检查失败'
else:
try:
job_id = int(str(job_id).strip())
response = api.get_async_job_with_id(job_id)
message = response.data['job']['message']
output = 'Status: ' + message
except:
output = 'Status: checking training status failed! 状态检查失败'
return output
def easyphoto_infer(model_id, selected_template_images, additional_prompt, seed, before_face_fusion_ratio, after_face_fusion_ratio, first_diffusion_steps, first_denoising_strength, second_diffusion_steps, second_denoising_strength, crop_face_preprocess, apply_face_fusion_before, apply_face_fusion_after, color_shift_middle, color_shift_last, background_restore):
image_urls = []
if len(selected_template_images) == 0:
output_info = 'Status: no templete selected! 需要选择模版'
return output_info, []
selected_template_images = eval(selected_template_images)
for image in selected_template_images:
image_url = upload_template(image)
image_urls.append(image_url)
client = ApiClient(host, appId, token)
api = AIGCImagesApi(client)
outputs = []
output_info = None
if model_id is None:
output_info = 'Status: no model id provided! 需要提供模型id'
return output_info, []
model_id = str(model_id).strip()
print('model id: ' + model_id)
for image_url in image_urls:
try:
params = {
"additional_prompt": additional_prompt,
"seed": seed,
"before_face_fusion_ratio": before_face_fusion_ratio,
"after_face_fusion_ratio": after_face_fusion_ratio,
"first_diffusion_steps": first_diffusion_steps,
"first_denoising_strength": first_denoising_strength,
"second_diffusion_steps": second_diffusion_steps,
"second_denoising_strength": second_denoising_strength,
"crop_face_preprocess": crop_face_preprocess,
"apply_face_fusion_before": apply_face_fusion_before,
"apply_face_fusion_after": apply_face_fusion_after,
"color_shift_middle": color_shift_middle,
"color_shift_last": color_shift_last,
"background_restore": background_restore
}
response = api.aigc_images_create(model_id, image_url, 'photog_infer_with_webui_pmml', params)
except:
output_info = 'Status: calling eas service failed!'
return output_info, []
data = response.data
message = response.message
if message == 'success':
image = data['image']
image = decode_image_from_base64jpeg(image)
outputs.append(image)
output_info = 'Status: generating image succesfully! 图像生成成功'
else:
output_info = 'Status: generating image failed! 图像生成失败'
return output_info, []
return output_info, outputs
with gr.Blocks() as easyphoto_demo:
model_id = gr.Textbox(visible=False)
with gr.TabItem('Training 训练'):
with gr.Blocks():
with gr.Row():
with gr.Column():
instance_images = gr.Gallery().style(columns=[4], rows=[2], object_fit="contain", height="auto")
with gr.Row():
upload_button = gr.UploadButton(
"Upload Photos 上传照片", file_types=["image"], file_count="multiple"
)
clear_button = gr.Button("Clear Photos 清除照片")
clear_button.click(fn=lambda: [], inputs=None, outputs=instance_images)
upload_button.upload(upload_file, inputs=[upload_button, instance_images], outputs=instance_images, queue=False)
gr.Markdown(
'''
训练步骤:
1.请上传5-20张半身照片或头肩照片,请确保面部比例不要太小。
2.点击下方的训练按钮,提交训练任务,大约需要15分钟,您可以检查您的训练任务状态。请不要重复点击提交训练任务的按钮!
3.当模型训练完成后,任务状态会显示success,切换到推理模式,并根据模板生成照片。
4.如果在上传时遇到卡顿,请修改上传图片的大小,尽量限制在1.5MB以内。
5.在训练或推理过程中,请不要刷新或关闭窗口。
'''
)
job_id = gr.Textbox(visible=False)
with gr.Row():
run_button = gr.Button('Submit My Training Job 提交训练任务')
check_button = gr.Button('Check My Training Job Status 检查我的训练任务状态')
output_message = gr.Textbox(value="", label="Status 状态", interactive=False)
run_button.click(fn=easyphoto_train,
inputs=[instance_images],
outputs=[output_message, job_id, model_id])
check_button.click(fn=easyphoto_check,
inputs=[job_id],
outputs=[output_message])
with gr.TabItem('Inference 推理'):
templates = glob.glob(r'./*.jpg')
preset_template = list(templates)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
template_gallery_list = [(i, i) for i in preset_template]
gallery = gr.Gallery(template_gallery_list).style(columns=[4], rows=[2], object_fit="contain", height="auto")
def select_function(evt: gr.SelectData):
return [preset_template[evt.index]]
selected_template_images = gr.Text(show_label=False, visible=False, placeholder="Selected")
gallery.select(select_function, None, selected_template_images)
with gr.Accordion("Advanced Options 参数设置", open=False):
additional_prompt = gr.Textbox(
label="Additional Prompt",
lines=3,
value='masterpiece, beauty',
interactive=True
)
seed = gr.Textbox(
label="Seed",
value=12345,
)
with gr.Row():
before_face_fusion_ratio = gr.Slider(
minimum=0.2, maximum=0.8, value=0.50,
step=0.05, label='Face Fusion Ratio Before'
)
after_face_fusion_ratio = gr.Slider(
minimum=0.2, maximum=0.8, value=0.50,
step=0.05, label='Face Fusion Ratio After'
)
with gr.Row():
first_diffusion_steps = gr.Slider(
minimum=15, maximum=50, value=50,
step=1, label='First Diffusion steps'
)
first_denoising_strength = gr.Slider(
minimum=0.30, maximum=0.60, value=0.45,
step=0.05, label='First Diffusion denoising strength'
)
with gr.Row():
second_diffusion_steps = gr.Slider(
minimum=15, maximum=50, value=20,
step=1, label='Second Diffusion steps'
)
second_denoising_strength = gr.Slider(
minimum=0.20, maximum=0.40, value=0.30,
step=0.05, label='Second Diffusion denoising strength'
)
with gr.Row():
crop_face_preprocess = gr.Checkbox(
label="Crop Face Preprocess",
value=True
)
apply_face_fusion_before = gr.Checkbox(
label="Apply Face Fusion Before",
value=True
)
apply_face_fusion_after = gr.Checkbox(
label="Apply Face Fusion After",
value=True
)
with gr.Row():
color_shift_middle = gr.Checkbox(
label="Apply color shift first",
value=True
)
color_shift_last = gr.Checkbox(
label="Apply color shift last",
value=True
)
background_restore = gr.Checkbox(
label="Background Restore",
value=False
)
with gr.Box():
gr.Markdown(
'''
Parameters:
1. **Face Fusion Ratio Before** represents the proportion of the first facial fusion, which is higher and more similar to the training object.
2. **Face Fusion Ratio After** represents the proportion of the second facial fusion, which is higher and more similar to the training object.
3. **Crop Face Preprocess** represents whether to crop the image before generation, which can adapt to images with smaller faces.
4. **Apply Face Fusion Before** represents whether to perform the first facial fusion.
5. **Apply Face Fusion After** represents whether to perform the second facial fusion.
参数:
1.**Face Fusion Ratio Before**表示第一次面部融合的比例,更高且更接近训练对象。
2.**Face Fusion Ratio After**表示第二次面部融合的比例,更高且更接近训练对象。
3.**Crop Face Preprocess**表示是否在生成之前裁剪图像,以适应面部较小的图像。
4.**Apply Face Fusion Before**表示是否执行第一次面部融合。
5.**Apply Face Fusion After**表示是否执行第二次面部融合。
'''
)
with gr.Column():
gr.Markdown('Generated Results 生成结果')
output_images = gr.Gallery(
label='Output',
show_label=False
).style(columns=[4], rows=[2], object_fit="contain", height="auto")
display_button = gr.Button('Start Generation 开始生成')
infer_progress = gr.Textbox(
label="Generation Progress 生成进度",
value="",
interactive=False
)
display_button.click(
fn=easyphoto_infer,
inputs=[model_id, selected_template_images, additional_prompt, seed, before_face_fusion_ratio, after_face_fusion_ratio, first_diffusion_steps, first_denoising_strength, second_diffusion_steps, second_denoising_strength, crop_face_preprocess, apply_face_fusion_before, apply_face_fusion_after, color_shift_middle, color_shift_last, background_restore],
outputs=[infer_progress, output_images]
)
gr.Markdown(
"""
参考链接
EasyPhoto GitHub:https://github.com/aigc-apps/sd-webui-EasyPhoto
阿里云Freetier:https://help.aliyun.com/document_detail/2567864.html
智码实验室:https://gallery.pai-ml.com/#/preview/deepLearning/cv/stable_diffusion_easyphoto
""")
easyphoto_demo.launch(share=True).queue()