Artiprocher commited on
Commit
473b807
1 Parent(s): ecf91ad
Files changed (2) hide show
  1. README copy.md +0 -13
  2. app.py +14 -5
README copy.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Pai Diffusion Large Zh
3
- emoji: 📚
4
- colorFrom: yellow
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 3.11.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import gradio as gr
2
  from LdmZhPipeline import LDMZhTextToImagePipeline
3
  import torch
 
 
4
 
5
  device = "cuda" if torch.cuda.is_available() else "cpu"
6
  model_id = "alibaba-pai/pai-diffusion-poem-large-zh"
@@ -9,9 +11,16 @@ pipe_text2img = LDMZhTextToImagePipeline.from_pretrained(model_id, use_auth_toke
9
  pipe_text2img = pipe_text2img.to(device)
10
 
11
  def infer_text2img(prompt, guide, steps):
12
- output = pipe_text2img(prompt, guidance_scale=guide, num_inference_steps=steps, use_sr=True)
13
- image = output.images[0]
14
- return image
 
 
 
 
 
 
 
15
 
16
  with gr.Blocks() as demo:
17
  examples = [
@@ -21,9 +30,9 @@ with gr.Blocks() as demo:
21
  ]
22
  with gr.Row():
23
  with gr.Column(scale=1, ):
24
- image_out = gr.Image(label = '输出(Output)')
25
  with gr.Column(scale=1, ):
26
- prompt = gr.Textbox(label = '提示词(Prompt)')
27
  submit_btn = gr.Button("生成图像(Generate)")
28
  with gr.Row(scale=0.5 ):
29
  guide = gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)')
 
1
  import gradio as gr
2
  from LdmZhPipeline import LDMZhTextToImagePipeline
3
  import torch
4
+ import numpy as np
5
+ from PIL import Image
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
  model_id = "alibaba-pai/pai-diffusion-poem-large-zh"
 
11
  pipe_text2img = pipe_text2img.to(device)
12
 
13
  def infer_text2img(prompt, guide, steps):
14
+ output = pipe_text2img([prompt]*9, guidance_scale=guide, num_inference_steps=steps)
15
+ images = output.images
16
+ images = [np.array(images[i]) for i in range(9)]
17
+ images = np.concatenate([
18
+ np.concatenate(images[0:3], axis=0),
19
+ np.concatenate(images[3:6], axis=0),
20
+ np.concatenate(images[6:9], axis=0),
21
+ ], axis=1)
22
+ images = Image.fromarray(images)
23
+ return images
24
 
25
  with gr.Blocks() as demo:
26
  examples = [
 
30
  ]
31
  with gr.Row():
32
  with gr.Column(scale=1, ):
33
+ image_out = gr.Image(label = '输出(output)')
34
  with gr.Column(scale=1, ):
35
+ prompt = gr.Textbox(label = '提示词(prompt)')
36
  submit_btn = gr.Button("生成图像(Generate)")
37
  with gr.Row(scale=0.5 ):
38
  guide = gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)')