Spaces:
Build error
Build error
Artiprocher
commited on
Commit
•
b0ab4d3
1
Parent(s):
dddb151
add app
Browse files- LdmZhPipeline.py +1036 -0
- README.md +5 -5
- app.py +36 -0
- requirements.txt +6 -0
LdmZhPipeline.py
ADDED
@@ -0,0 +1,1036 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
import importlib
|
4 |
+
import inspect
|
5 |
+
import os
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Dict, List, Optional, Union
|
8 |
+
from collections import OrderedDict
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
import functools
|
14 |
+
|
15 |
+
import diffusers
|
16 |
+
import PIL
|
17 |
+
from accelerate.utils.versions import is_torch_version
|
18 |
+
from huggingface_hub import snapshot_download
|
19 |
+
from packaging import version
|
20 |
+
from PIL import Image
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
|
23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from diffusers.dynamic_modules_utils import get_class_from_dynamic_module
|
25 |
+
from diffusers.modeling_utils import ModelMixin
|
26 |
+
from diffusers.hub_utils import http_user_agent
|
27 |
+
from diffusers.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
28 |
+
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
29 |
+
from diffusers.utils import (
|
30 |
+
CONFIG_NAME,
|
31 |
+
DIFFUSERS_CACHE,
|
32 |
+
ONNX_WEIGHTS_NAME,
|
33 |
+
WEIGHTS_NAME,
|
34 |
+
BaseOutput,
|
35 |
+
deprecate,
|
36 |
+
is_transformers_available,
|
37 |
+
logging,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
if is_transformers_available():
|
42 |
+
import transformers
|
43 |
+
from transformers import PreTrainedModel
|
44 |
+
|
45 |
+
|
46 |
+
INDEX_FILE = "diffusion_pytorch_model.bin"
|
47 |
+
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
|
48 |
+
DUMMY_MODULES_FOLDER = "diffusers.utils"
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
LOADABLE_CLASSES = {
|
55 |
+
"diffusers": {
|
56 |
+
"ModelMixin": ["save_pretrained", "from_pretrained"],
|
57 |
+
"SchedulerMixin": ["save_config", "from_config"],
|
58 |
+
"DiffusionPipeline": ["save_pretrained", "from_pretrained"],
|
59 |
+
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
|
60 |
+
},
|
61 |
+
"transformers": {
|
62 |
+
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
|
63 |
+
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
|
64 |
+
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
|
65 |
+
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
|
66 |
+
},
|
67 |
+
"LdmZhPipeline": {
|
68 |
+
"WukongClipTextEncoder": ["save_pretrained", "from_pretrained"],
|
69 |
+
"ESRGAN": ["save_pretrained", "from_pretrained"],
|
70 |
+
},
|
71 |
+
}
|
72 |
+
|
73 |
+
ALL_IMPORTABLE_CLASSES = {}
|
74 |
+
for library in LOADABLE_CLASSES:
|
75 |
+
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class ImagePipelineOutput(BaseOutput):
|
80 |
+
"""
|
81 |
+
Output class for image pipelines.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
85 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
86 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
87 |
+
"""
|
88 |
+
|
89 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
90 |
+
|
91 |
+
|
92 |
+
@dataclass
|
93 |
+
class AudioPipelineOutput(BaseOutput):
|
94 |
+
"""
|
95 |
+
Output class for audio pipelines.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
audios (`np.ndarray`)
|
99 |
+
List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
|
100 |
+
denoised audio samples of the diffusion pipeline.
|
101 |
+
"""
|
102 |
+
|
103 |
+
audios: np.ndarray
|
104 |
+
|
105 |
+
|
106 |
+
class DiffusionPipeline(ConfigMixin):
|
107 |
+
r"""
|
108 |
+
Base class for all models.
|
109 |
+
|
110 |
+
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
|
111 |
+
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:
|
112 |
+
|
113 |
+
- move all PyTorch modules to the device of your choice
|
114 |
+
- enabling/disabling the progress bar for the denoising iteration
|
115 |
+
|
116 |
+
Class attributes:
|
117 |
+
|
118 |
+
- **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
|
119 |
+
components of the diffusion pipeline.
|
120 |
+
"""
|
121 |
+
config_name = "model_index.json"
|
122 |
+
|
123 |
+
def register_modules(self, **kwargs):
|
124 |
+
# import it here to avoid circular import
|
125 |
+
from diffusers import pipelines
|
126 |
+
|
127 |
+
for name, module in kwargs.items():
|
128 |
+
# retrieve library
|
129 |
+
if module is None:
|
130 |
+
register_dict = {name: (None, None)}
|
131 |
+
else:
|
132 |
+
library = module.__module__.split(".")[0]
|
133 |
+
|
134 |
+
# check if the module is a pipeline module
|
135 |
+
pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
|
136 |
+
path = module.__module__.split(".")
|
137 |
+
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
|
138 |
+
|
139 |
+
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
140 |
+
# Or if it's a pipeline module, then the module is inside the pipeline
|
141 |
+
# folder so we set the library to module name.
|
142 |
+
if library not in LOADABLE_CLASSES or is_pipeline_module:
|
143 |
+
library = pipeline_dir
|
144 |
+
|
145 |
+
# retrieve class_name
|
146 |
+
class_name = module.__class__.__name__
|
147 |
+
|
148 |
+
register_dict = {name: (library, class_name)}
|
149 |
+
|
150 |
+
# save model index config
|
151 |
+
self.register_to_config(**register_dict)
|
152 |
+
|
153 |
+
# set models
|
154 |
+
setattr(self, name, module)
|
155 |
+
|
156 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
|
157 |
+
"""
|
158 |
+
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
|
159 |
+
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
|
160 |
+
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.
|
161 |
+
|
162 |
+
Arguments:
|
163 |
+
save_directory (`str` or `os.PathLike`):
|
164 |
+
Directory to which to save. Will be created if it doesn't exist.
|
165 |
+
"""
|
166 |
+
self.save_config(save_directory)
|
167 |
+
|
168 |
+
model_index_dict = dict(self.config)
|
169 |
+
model_index_dict.pop("_class_name")
|
170 |
+
model_index_dict.pop("_diffusers_version")
|
171 |
+
model_index_dict.pop("_module", None)
|
172 |
+
|
173 |
+
for pipeline_component_name in model_index_dict.keys():
|
174 |
+
sub_model = getattr(self, pipeline_component_name)
|
175 |
+
if sub_model is None:
|
176 |
+
# edge case for saving a pipeline with safety_checker=None
|
177 |
+
continue
|
178 |
+
|
179 |
+
model_cls = sub_model.__class__
|
180 |
+
|
181 |
+
save_method_name = None
|
182 |
+
# search for the model's base class in LOADABLE_CLASSES
|
183 |
+
for library_name, library_classes in LOADABLE_CLASSES.items():
|
184 |
+
library = importlib.import_module(library_name)
|
185 |
+
for base_class, save_load_methods in library_classes.items():
|
186 |
+
class_candidate = getattr(library, base_class)
|
187 |
+
if issubclass(model_cls, class_candidate):
|
188 |
+
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
|
189 |
+
save_method_name = save_load_methods[0]
|
190 |
+
break
|
191 |
+
if save_method_name is not None:
|
192 |
+
break
|
193 |
+
|
194 |
+
save_method = getattr(sub_model, save_method_name)
|
195 |
+
save_method(os.path.join(save_directory, pipeline_component_name))
|
196 |
+
|
197 |
+
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
198 |
+
if torch_device is None:
|
199 |
+
return self
|
200 |
+
|
201 |
+
module_names, _ = self.extract_init_dict(dict(self.config))
|
202 |
+
for name in module_names.keys():
|
203 |
+
module = getattr(self, name)
|
204 |
+
if isinstance(module, torch.nn.Module):
|
205 |
+
if module.dtype == torch.float16 and str(torch_device) in ["cpu", "mps"]:
|
206 |
+
logger.warning(
|
207 |
+
"Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` or `mps` device. It"
|
208 |
+
" is not recommended to move them to `cpu` or `mps` as running them will fail. Please make"
|
209 |
+
" sure to use a `cuda` device to run the pipeline in inference. due to the lack of support for"
|
210 |
+
" `float16` operations on those devices in PyTorch. Please remove the"
|
211 |
+
" `torch_dtype=torch.float16` argument, or use a `cuda` device to run inference."
|
212 |
+
)
|
213 |
+
module.to(torch_device)
|
214 |
+
return self
|
215 |
+
|
216 |
+
@property
|
217 |
+
def device(self) -> torch.device:
|
218 |
+
r"""
|
219 |
+
Returns:
|
220 |
+
`torch.device`: The torch device on which the pipeline is located.
|
221 |
+
"""
|
222 |
+
module_names, _ = self.extract_init_dict(dict(self.config))
|
223 |
+
for name in module_names.keys():
|
224 |
+
module = getattr(self, name)
|
225 |
+
if isinstance(module, torch.nn.Module):
|
226 |
+
# if module.device == torch.device("meta"):
|
227 |
+
# return torch.device("cpu")
|
228 |
+
return module.device
|
229 |
+
return torch.device("cpu")
|
230 |
+
|
231 |
+
@classmethod
|
232 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
233 |
+
r"""
|
234 |
+
Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.
|
235 |
+
|
236 |
+
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).
|
237 |
+
|
238 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
239 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
240 |
+
task.
|
241 |
+
|
242 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
243 |
+
weights are discarded.
|
244 |
+
|
245 |
+
Parameters:
|
246 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
247 |
+
Can be either:
|
248 |
+
|
249 |
+
- A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
|
250 |
+
https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
|
251 |
+
`CompVis/ldm-text2im-large-256`.
|
252 |
+
- A path to a *directory* containing pipeline weights saved using
|
253 |
+
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
|
254 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
255 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
256 |
+
will be automatically derived from the model's weights.
|
257 |
+
custom_pipeline (`str`, *optional*):
|
258 |
+
|
259 |
+
<Tip warning={true}>
|
260 |
+
|
261 |
+
This is an experimental feature and is likely to change in the future.
|
262 |
+
|
263 |
+
</Tip>
|
264 |
+
|
265 |
+
Can be either:
|
266 |
+
|
267 |
+
- A string, the *repo id* of a custom pipeline hosted inside a model repo on
|
268 |
+
https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
|
269 |
+
like `hf-internal-testing/diffusers-dummy-pipeline`.
|
270 |
+
|
271 |
+
<Tip>
|
272 |
+
|
273 |
+
It is required that the model repo has a file, called `pipeline.py` that defines the custom
|
274 |
+
pipeline.
|
275 |
+
|
276 |
+
</Tip>
|
277 |
+
|
278 |
+
- A string, the *file name* of a community pipeline hosted on GitHub under
|
279 |
+
https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
|
280 |
+
match exactly the file name without `.py` located under the above link, *e.g.*
|
281 |
+
`clip_guided_stable_diffusion`.
|
282 |
+
|
283 |
+
<Tip>
|
284 |
+
|
285 |
+
Community pipelines are always loaded from the current `main` branch of GitHub.
|
286 |
+
|
287 |
+
</Tip>
|
288 |
+
|
289 |
+
- A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.
|
290 |
+
|
291 |
+
<Tip>
|
292 |
+
|
293 |
+
It is required that the directory has a file, called `pipeline.py` that defines the custom
|
294 |
+
pipeline.
|
295 |
+
|
296 |
+
</Tip>
|
297 |
+
|
298 |
+
For more information on how to load and create custom pipelines, please have a look at [Loading and
|
299 |
+
Creating Custom
|
300 |
+
Pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/custom_pipelines)
|
301 |
+
|
302 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
303 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
304 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
305 |
+
cached versions if they exist.
|
306 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
307 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
308 |
+
file exists.
|
309 |
+
proxies (`Dict[str, str]`, *optional*):
|
310 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
311 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
312 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
313 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
314 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
315 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
316 |
+
use_auth_token (`str` or *bool*, *optional*):
|
317 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
318 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
319 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
320 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
321 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
322 |
+
identifier allowed by git.
|
323 |
+
mirror (`str`, *optional*):
|
324 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
325 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
326 |
+
Please refer to the mirror site for more information. specify the folder name here.
|
327 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
328 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
329 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
330 |
+
same device.
|
331 |
+
|
332 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
333 |
+
more information about each option see [designing a device
|
334 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
335 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
336 |
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
337 |
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
338 |
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
339 |
+
setting this argument to `True` will raise an error.
|
340 |
+
|
341 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
342 |
+
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
|
343 |
+
specific pipeline class. The overwritten components are then directly passed to the pipelines
|
344 |
+
`__init__` method. See example below for more information.
|
345 |
+
|
346 |
+
<Tip>
|
347 |
+
|
348 |
+
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
|
349 |
+
models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
|
350 |
+
|
351 |
+
</Tip>
|
352 |
+
|
353 |
+
<Tip>
|
354 |
+
|
355 |
+
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
|
356 |
+
this method in a firewalled environment.
|
357 |
+
|
358 |
+
</Tip>
|
359 |
+
|
360 |
+
Examples:
|
361 |
+
|
362 |
+
```py
|
363 |
+
>>> from diffusers import DiffusionPipeline
|
364 |
+
|
365 |
+
>>> # Download pipeline from huggingface.co and cache.
|
366 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
367 |
+
|
368 |
+
>>> # Download pipeline that requires an authorization token
|
369 |
+
>>> # For more information on access tokens, please refer to this section
|
370 |
+
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
|
371 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
372 |
+
|
373 |
+
>>> # Download pipeline, but overwrite scheduler
|
374 |
+
>>> from diffusers import LMSDiscreteScheduler
|
375 |
+
|
376 |
+
>>> scheduler = LMSDiscreteScheduler.from_config("runwayml/stable-diffusion-v1-5", subfolder="scheduler")
|
377 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", scheduler=scheduler)
|
378 |
+
```
|
379 |
+
"""
|
380 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
381 |
+
resume_download = kwargs.pop("resume_download", False)
|
382 |
+
force_download = kwargs.pop("force_download", False)
|
383 |
+
proxies = kwargs.pop("proxies", None)
|
384 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
385 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
386 |
+
revision = kwargs.pop("revision", None)
|
387 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
388 |
+
custom_pipeline = kwargs.pop("custom_pipeline", None)
|
389 |
+
provider = kwargs.pop("provider", None)
|
390 |
+
sess_options = kwargs.pop("sess_options", None)
|
391 |
+
device_map = kwargs.pop("device_map", None)
|
392 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
393 |
+
|
394 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
395 |
+
raise NotImplementedError(
|
396 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
397 |
+
" `device_map=None`."
|
398 |
+
)
|
399 |
+
|
400 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
401 |
+
raise NotImplementedError(
|
402 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
403 |
+
" `low_cpu_mem_usage=False`."
|
404 |
+
)
|
405 |
+
|
406 |
+
if low_cpu_mem_usage is False and device_map is not None:
|
407 |
+
raise ValueError(
|
408 |
+
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
|
409 |
+
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
410 |
+
)
|
411 |
+
|
412 |
+
# 1. Download the checkpoints and configs
|
413 |
+
# use snapshot download here to get it working from from_pretrained
|
414 |
+
if not os.path.isdir(pretrained_model_name_or_path):
|
415 |
+
config_dict = cls.get_config_dict(
|
416 |
+
pretrained_model_name_or_path,
|
417 |
+
cache_dir=cache_dir,
|
418 |
+
resume_download=resume_download,
|
419 |
+
force_download=force_download,
|
420 |
+
proxies=proxies,
|
421 |
+
local_files_only=local_files_only,
|
422 |
+
use_auth_token=use_auth_token,
|
423 |
+
revision=revision,
|
424 |
+
)
|
425 |
+
# make sure we only download sub-folders and `diffusers` filenames
|
426 |
+
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
|
427 |
+
allow_patterns = [os.path.join(k, "*") for k in folder_names]
|
428 |
+
allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]
|
429 |
+
|
430 |
+
# make sure we don't download flax weights
|
431 |
+
ignore_patterns = "*.msgpack"
|
432 |
+
|
433 |
+
if custom_pipeline is not None:
|
434 |
+
allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]
|
435 |
+
|
436 |
+
if cls != DiffusionPipeline:
|
437 |
+
requested_pipeline_class = cls.__name__
|
438 |
+
else:
|
439 |
+
requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
|
440 |
+
user_agent = {"pipeline_class": requested_pipeline_class}
|
441 |
+
if custom_pipeline is not None:
|
442 |
+
user_agent["custom_pipeline"] = custom_pipeline
|
443 |
+
user_agent = http_user_agent(user_agent)
|
444 |
+
|
445 |
+
# download all allow_patterns
|
446 |
+
cached_folder = snapshot_download(
|
447 |
+
pretrained_model_name_or_path,
|
448 |
+
cache_dir=cache_dir,
|
449 |
+
resume_download=resume_download,
|
450 |
+
proxies=proxies,
|
451 |
+
local_files_only=local_files_only,
|
452 |
+
use_auth_token=use_auth_token,
|
453 |
+
revision=revision,
|
454 |
+
allow_patterns=allow_patterns,
|
455 |
+
ignore_patterns=ignore_patterns,
|
456 |
+
user_agent=user_agent,
|
457 |
+
)
|
458 |
+
else:
|
459 |
+
cached_folder = pretrained_model_name_or_path
|
460 |
+
|
461 |
+
config_dict = cls.get_config_dict(cached_folder)
|
462 |
+
|
463 |
+
# 2. Load the pipeline class, if using custom module then load it from the hub
|
464 |
+
# if we load from explicit class, let's use it
|
465 |
+
if custom_pipeline is not None:
|
466 |
+
pipeline_class = get_class_from_dynamic_module(
|
467 |
+
custom_pipeline, module_file=CUSTOM_PIPELINE_FILE_NAME, cache_dir=custom_pipeline
|
468 |
+
)
|
469 |
+
elif cls != DiffusionPipeline:
|
470 |
+
pipeline_class = cls
|
471 |
+
else:
|
472 |
+
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
|
473 |
+
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
|
474 |
+
|
475 |
+
# To be removed in 1.0.0
|
476 |
+
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
|
477 |
+
version.parse(config_dict["_diffusers_version"]).base_version
|
478 |
+
) <= version.parse("0.5.1"):
|
479 |
+
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy
|
480 |
+
|
481 |
+
pipeline_class = StableDiffusionInpaintPipelineLegacy
|
482 |
+
|
483 |
+
deprecation_message = (
|
484 |
+
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
|
485 |
+
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
|
486 |
+
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
|
487 |
+
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
|
488 |
+
f" checkpoint {pretrained_model_name_or_path} to the format of"
|
489 |
+
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
|
490 |
+
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
|
491 |
+
)
|
492 |
+
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
|
493 |
+
|
494 |
+
# some modules can be passed directly to the init
|
495 |
+
# in this case they are already instantiated in `kwargs`
|
496 |
+
# extract them here
|
497 |
+
expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys()) - set(["self"])
|
498 |
+
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
|
499 |
+
|
500 |
+
init_dict, unused_kwargs = pipeline_class.extract_init_dict(config_dict, **kwargs)
|
501 |
+
|
502 |
+
if len(unused_kwargs) > 0:
|
503 |
+
logger.warning(f"Keyword arguments {unused_kwargs} not recognized.")
|
504 |
+
|
505 |
+
init_kwargs = {}
|
506 |
+
|
507 |
+
# import it here to avoid circular import
|
508 |
+
from diffusers import pipelines
|
509 |
+
|
510 |
+
# 3. Load each module in the pipeline
|
511 |
+
for name, (library_name, class_name) in init_dict.items():
|
512 |
+
if class_name is None:
|
513 |
+
# edge case for when the pipeline was saved with safety_checker=None
|
514 |
+
init_kwargs[name] = None
|
515 |
+
continue
|
516 |
+
|
517 |
+
# 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
|
518 |
+
if class_name.startswith("Flax"):
|
519 |
+
class_name = class_name[4:]
|
520 |
+
|
521 |
+
is_pipeline_module = hasattr(pipelines, library_name)
|
522 |
+
loaded_sub_model = None
|
523 |
+
sub_model_should_be_defined = True
|
524 |
+
|
525 |
+
# if the model is in a pipeline module, then we load it from the pipeline
|
526 |
+
if name in passed_class_obj:
|
527 |
+
# 1. check that passed_class_obj has correct parent class
|
528 |
+
if not is_pipeline_module:
|
529 |
+
library = importlib.import_module(library_name)
|
530 |
+
class_obj = getattr(library, class_name)
|
531 |
+
importable_classes = LOADABLE_CLASSES[library_name]
|
532 |
+
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
|
533 |
+
|
534 |
+
expected_class_obj = None
|
535 |
+
for class_name, class_candidate in class_candidates.items():
|
536 |
+
if issubclass(class_obj, class_candidate):
|
537 |
+
expected_class_obj = class_candidate
|
538 |
+
|
539 |
+
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
|
540 |
+
raise ValueError(
|
541 |
+
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
|
542 |
+
f" {expected_class_obj}"
|
543 |
+
)
|
544 |
+
elif passed_class_obj[name] is None:
|
545 |
+
logger.warn(
|
546 |
+
f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
|
547 |
+
f" that this might lead to problems when using {pipeline_class} and is not recommended."
|
548 |
+
)
|
549 |
+
sub_model_should_be_defined = False
|
550 |
+
else:
|
551 |
+
logger.warn(
|
552 |
+
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
|
553 |
+
" has the correct type"
|
554 |
+
)
|
555 |
+
|
556 |
+
# set passed class object
|
557 |
+
loaded_sub_model = passed_class_obj[name]
|
558 |
+
elif is_pipeline_module:
|
559 |
+
pipeline_module = getattr(pipelines, library_name)
|
560 |
+
class_obj = getattr(pipeline_module, class_name)
|
561 |
+
importable_classes = ALL_IMPORTABLE_CLASSES
|
562 |
+
class_candidates = {c: class_obj for c in importable_classes.keys()}
|
563 |
+
else:
|
564 |
+
# else we just import it from the library.
|
565 |
+
library = importlib.import_module(library_name)
|
566 |
+
class_obj = getattr(library, class_name)
|
567 |
+
importable_classes = LOADABLE_CLASSES[library_name]
|
568 |
+
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
|
569 |
+
|
570 |
+
if loaded_sub_model is None and sub_model_should_be_defined:
|
571 |
+
load_method_name = None
|
572 |
+
for class_name, class_candidate in class_candidates.items():
|
573 |
+
if issubclass(class_obj, class_candidate):
|
574 |
+
load_method_name = importable_classes[class_name][1]
|
575 |
+
|
576 |
+
if load_method_name is None:
|
577 |
+
none_module = class_obj.__module__
|
578 |
+
if none_module.startswith(DUMMY_MODULES_FOLDER) and "dummy" in none_module:
|
579 |
+
# call class_obj for nice error message of missing requirements
|
580 |
+
class_obj()
|
581 |
+
|
582 |
+
raise ValueError(
|
583 |
+
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
|
584 |
+
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
|
585 |
+
)
|
586 |
+
|
587 |
+
load_method = getattr(class_obj, load_method_name)
|
588 |
+
loading_kwargs = {}
|
589 |
+
|
590 |
+
if issubclass(class_obj, torch.nn.Module):
|
591 |
+
loading_kwargs["torch_dtype"] = torch_dtype
|
592 |
+
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
|
593 |
+
loading_kwargs["provider"] = provider
|
594 |
+
loading_kwargs["sess_options"] = sess_options
|
595 |
+
|
596 |
+
is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
|
597 |
+
is_transformers_model = (
|
598 |
+
is_transformers_available()
|
599 |
+
and issubclass(class_obj, PreTrainedModel)
|
600 |
+
and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
|
601 |
+
)
|
602 |
+
|
603 |
+
# When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
|
604 |
+
# To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
|
605 |
+
# This makes sure that the weights won't be initialized which significantly speeds up loading.
|
606 |
+
if is_diffusers_model or is_transformers_model:
|
607 |
+
loading_kwargs["device_map"] = device_map
|
608 |
+
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
609 |
+
|
610 |
+
# check if the module is in a subdirectory
|
611 |
+
if os.path.isdir(os.path.join(cached_folder, name)):
|
612 |
+
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
613 |
+
else:
|
614 |
+
# else load from the root directory
|
615 |
+
loaded_sub_model = load_method(cached_folder, **loading_kwargs)
|
616 |
+
|
617 |
+
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
|
618 |
+
|
619 |
+
# 4. Potentially add passed objects if expected
|
620 |
+
missing_modules = set(expected_modules) - set(init_kwargs.keys())
|
621 |
+
if len(missing_modules) > 0 and missing_modules <= set(passed_class_obj.keys()):
|
622 |
+
for module in missing_modules:
|
623 |
+
init_kwargs[module] = passed_class_obj[module]
|
624 |
+
elif len(missing_modules) > 0:
|
625 |
+
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys()))
|
626 |
+
raise ValueError(
|
627 |
+
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
|
628 |
+
)
|
629 |
+
|
630 |
+
# 5. Instantiate the pipeline
|
631 |
+
model = pipeline_class(**init_kwargs)
|
632 |
+
return model
|
633 |
+
|
634 |
+
@property
|
635 |
+
def components(self) -> Dict[str, Any]:
|
636 |
+
r"""
|
637 |
+
|
638 |
+
The `self.components` property can be useful to run different pipelines with the same weights and
|
639 |
+
configurations to not have to re-allocate memory.
|
640 |
+
|
641 |
+
Examples:
|
642 |
+
|
643 |
+
```py
|
644 |
+
>>> from diffusers import (
|
645 |
+
... StableDiffusionPipeline,
|
646 |
+
... StableDiffusionImg2ImgPipeline,
|
647 |
+
... StableDiffusionInpaintPipeline,
|
648 |
+
... )
|
649 |
+
|
650 |
+
>>> img2text = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
651 |
+
>>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
|
652 |
+
>>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)
|
653 |
+
```
|
654 |
+
|
655 |
+
Returns:
|
656 |
+
A dictionaly containing all the modules needed to initialize the pipeline.
|
657 |
+
"""
|
658 |
+
components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
|
659 |
+
expected_modules = set(inspect.signature(self.__init__).parameters.keys()) - set(["self"])
|
660 |
+
|
661 |
+
if set(components.keys()) != expected_modules:
|
662 |
+
raise ValueError(
|
663 |
+
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
|
664 |
+
f" {expected_modules} to be defined, but {components} are defined."
|
665 |
+
)
|
666 |
+
|
667 |
+
return components
|
668 |
+
|
669 |
+
@staticmethod
|
670 |
+
def numpy_to_pil(images):
|
671 |
+
"""
|
672 |
+
Convert a numpy image or a batch of images to a PIL image.
|
673 |
+
"""
|
674 |
+
if images.ndim == 3:
|
675 |
+
images = images[None, ...]
|
676 |
+
images = (images * 255).round().astype("uint8")
|
677 |
+
if images.shape[-1] == 1:
|
678 |
+
# special case for grayscale (single channel) images
|
679 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
680 |
+
else:
|
681 |
+
pil_images = [Image.fromarray(image) for image in images]
|
682 |
+
|
683 |
+
return pil_images
|
684 |
+
|
685 |
+
def progress_bar(self, iterable):
|
686 |
+
if not hasattr(self, "_progress_bar_config"):
|
687 |
+
self._progress_bar_config = {}
|
688 |
+
elif not isinstance(self._progress_bar_config, dict):
|
689 |
+
raise ValueError(
|
690 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
691 |
+
)
|
692 |
+
|
693 |
+
return tqdm(iterable, **self._progress_bar_config)
|
694 |
+
|
695 |
+
def set_progress_bar_config(self, **kwargs):
|
696 |
+
self._progress_bar_config = kwargs
|
697 |
+
|
698 |
+
|
699 |
+
class LDMZhTextToImagePipeline(DiffusionPipeline):
|
700 |
+
|
701 |
+
def __init__(
|
702 |
+
self,
|
703 |
+
vqvae,
|
704 |
+
bert,
|
705 |
+
tokenizer,
|
706 |
+
unet,
|
707 |
+
scheduler,
|
708 |
+
sr,
|
709 |
+
):
|
710 |
+
super().__init__()
|
711 |
+
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler, sr=sr)
|
712 |
+
|
713 |
+
@torch.no_grad()
|
714 |
+
def __call__(
|
715 |
+
self,
|
716 |
+
prompt: Union[str, List[str]],
|
717 |
+
height: Optional[int] = 256,
|
718 |
+
width: Optional[int] = 256,
|
719 |
+
num_inference_steps: Optional[int] = 50,
|
720 |
+
guidance_scale: Optional[float] = 5.0,
|
721 |
+
eta: Optional[float] = 0.0,
|
722 |
+
generator: Optional[torch.Generator] = None,
|
723 |
+
output_type: Optional[str] = "pil",
|
724 |
+
return_dict: bool = True,
|
725 |
+
use_sr: bool = False,
|
726 |
+
**kwargs,
|
727 |
+
):
|
728 |
+
r"""
|
729 |
+
Args:
|
730 |
+
prompt (`str` or `List[str]`):
|
731 |
+
The prompt or prompts to guide the image generation.
|
732 |
+
height (`int`, *optional*, defaults to 256):
|
733 |
+
The height in pixels of the generated image.
|
734 |
+
width (`int`, *optional*, defaults to 256):
|
735 |
+
The width in pixels of the generated image.
|
736 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
737 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
738 |
+
expense of slower inference.
|
739 |
+
guidance_scale (`float`, *optional*, defaults to 1.0):
|
740 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
741 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
742 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
743 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt` at
|
744 |
+
the, usually at the expense of lower image quality.
|
745 |
+
generator (`torch.Generator`, *optional*):
|
746 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
747 |
+
deterministic.
|
748 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
749 |
+
The output format of the generate image. Choose between
|
750 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
751 |
+
return_dict (`bool`, *optional*):
|
752 |
+
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
|
753 |
+
|
754 |
+
Returns:
|
755 |
+
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
|
756 |
+
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
|
757 |
+
generated images.
|
758 |
+
"""
|
759 |
+
|
760 |
+
if isinstance(prompt, str):
|
761 |
+
batch_size = 1
|
762 |
+
elif isinstance(prompt, list):
|
763 |
+
batch_size = len(prompt)
|
764 |
+
else:
|
765 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
766 |
+
|
767 |
+
if height % 8 != 0 or width % 8 != 0:
|
768 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
769 |
+
|
770 |
+
# get unconditional embeddings for classifier free guidance
|
771 |
+
if guidance_scale != 1.0:
|
772 |
+
uncond_input = self.tokenizer([""] * batch_size, padding="max_length", max_length=32, return_tensors="pt")
|
773 |
+
uncond_embeddings = self.bert(uncond_input.input_ids.to(self.device))
|
774 |
+
|
775 |
+
# get prompt text embeddings
|
776 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=32, return_tensors="pt")
|
777 |
+
text_embeddings = self.bert(text_input.input_ids.to(self.device))
|
778 |
+
|
779 |
+
latents = torch.randn(
|
780 |
+
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
781 |
+
generator=generator,
|
782 |
+
)
|
783 |
+
latents = latents.to(self.device)
|
784 |
+
|
785 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
786 |
+
|
787 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
788 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
789 |
+
|
790 |
+
extra_kwargs = {}
|
791 |
+
if accepts_eta:
|
792 |
+
extra_kwargs["eta"] = eta
|
793 |
+
|
794 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
795 |
+
if guidance_scale == 1.0:
|
796 |
+
# guidance_scale of 1 means no guidance
|
797 |
+
latents_input = latents
|
798 |
+
context = text_embeddings
|
799 |
+
else:
|
800 |
+
# For classifier free guidance, we need to do two forward passes.
|
801 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
802 |
+
# to avoid doing two forward passes
|
803 |
+
latents_input = torch.cat([latents] * 2)
|
804 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
805 |
+
|
806 |
+
# predict the noise residual
|
807 |
+
noise_pred = self.unet(latents_input, t, encoder_hidden_states=context).sample
|
808 |
+
# perform guidance
|
809 |
+
if guidance_scale != 1.0:
|
810 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
811 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
812 |
+
|
813 |
+
# compute the previous noisy sample x_t -> x_t-1
|
814 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample
|
815 |
+
|
816 |
+
# scale and decode the image latents with vae
|
817 |
+
latents = 1 / 0.18215 * latents
|
818 |
+
image = self.vqvae.decode(latents).sample
|
819 |
+
|
820 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
821 |
+
if use_sr:
|
822 |
+
image = self.sr(image)
|
823 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
824 |
+
if output_type == "pil":
|
825 |
+
image = self.numpy_to_pil(image)
|
826 |
+
|
827 |
+
if not return_dict:
|
828 |
+
return (image,)
|
829 |
+
|
830 |
+
return ImagePipelineOutput(images=image)
|
831 |
+
|
832 |
+
|
833 |
+
class QuickGELU(nn.Module):
|
834 |
+
def forward(self, x: torch.Tensor):
|
835 |
+
return x * torch.sigmoid(1.702 * x)
|
836 |
+
|
837 |
+
|
838 |
+
class ResidualAttentionBlock(nn.Module):
|
839 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
840 |
+
super().__init__()
|
841 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
842 |
+
self.ln_1 = nn.LayerNorm(d_model,eps=1e-07)
|
843 |
+
self.mlp = nn.Sequential(OrderedDict([
|
844 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
845 |
+
("gelu", QuickGELU()),
|
846 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
847 |
+
]))
|
848 |
+
self.ln_2 = nn.LayerNorm(d_model,eps=1e-07)
|
849 |
+
self.attn_mask = attn_mask
|
850 |
+
def attention(self, x: torch.Tensor):
|
851 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
852 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
853 |
+
def forward(self, x: torch.Tensor):
|
854 |
+
x = x + self.attention(self.ln_1(x))
|
855 |
+
x = x + self.mlp(self.ln_2(x))
|
856 |
+
return x
|
857 |
+
|
858 |
+
|
859 |
+
class Transformer(nn.Module):
|
860 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
861 |
+
super().__init__()
|
862 |
+
self.width = width
|
863 |
+
self.layers = layers
|
864 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
865 |
+
|
866 |
+
def forward(self, x: torch.Tensor):
|
867 |
+
return self.resblocks(x)
|
868 |
+
|
869 |
+
|
870 |
+
class TextTransformer(nn.Module):
|
871 |
+
def __init__(self,
|
872 |
+
context_length = 32,
|
873 |
+
vocab_size = 21128,
|
874 |
+
output_dim = 768,
|
875 |
+
width = 768,
|
876 |
+
layers = 12,
|
877 |
+
heads = 12,
|
878 |
+
return_full_embed = False):
|
879 |
+
super(TextTransformer, self).__init__()
|
880 |
+
self.width = width
|
881 |
+
self.layers = layers
|
882 |
+
self.vocab_size = vocab_size
|
883 |
+
self.return_full_embed = return_full_embed
|
884 |
+
|
885 |
+
self.transformer = Transformer(width, layers, heads, self.build_attntion_mask(context_length))
|
886 |
+
self.text_projection = torch.nn.Parameter(
|
887 |
+
torch.tensor(np.random.normal(0, self.width ** -0.5, size=(self.width, output_dim)).astype(np.float32)))
|
888 |
+
self.ln_final = nn.LayerNorm(width,eps=1e-07)
|
889 |
+
|
890 |
+
# https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/27
|
891 |
+
# https://github.com/pytorch/pytorch/blob/a40812de534b42fcf0eb57a5cecbfdc7a70100cf/torch/nn/init.py#L22
|
892 |
+
self.embedding_table = nn.Parameter(nn.init.trunc_normal_(torch.empty(vocab_size, width),std=0.02))
|
893 |
+
# self.embedding_table = nn.Embedding.from_pretrained(nn.init.trunc_normal_(torch.empty(vocab_size, width),std=0.02))
|
894 |
+
self.positional_embedding = nn.Parameter(nn.init.trunc_normal_(torch.empty(context_length, width),std=0.01))
|
895 |
+
# self.positional_embedding = nn.Embedding.from_pretrained(nn.init.trunc_normal_(torch.empty(context_length, width),std=0.01))
|
896 |
+
|
897 |
+
self.index_select=torch.index_select
|
898 |
+
self.reshape=torch.reshape
|
899 |
+
|
900 |
+
@staticmethod
|
901 |
+
def build_attntion_mask(context_length):
|
902 |
+
mask = np.triu(np.full((context_length, context_length), -np.inf).astype(np.float32), 1)
|
903 |
+
mask = torch.tensor(mask)
|
904 |
+
return mask
|
905 |
+
|
906 |
+
def forward(self, x: torch.Tensor):
|
907 |
+
|
908 |
+
tail_token=(x==102).nonzero(as_tuple=True)
|
909 |
+
bsz, ctx_len = x.shape
|
910 |
+
flatten_id = x.flatten()
|
911 |
+
index_select_result = self.index_select(self.embedding_table,0, flatten_id)
|
912 |
+
x = self.reshape(index_select_result, (bsz, ctx_len, -1))
|
913 |
+
x = x + self.positional_embedding
|
914 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
915 |
+
x = self.transformer(x)
|
916 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
917 |
+
x = self.ln_final(x)
|
918 |
+
x=x[tail_token]
|
919 |
+
x = x @ self.text_projection
|
920 |
+
return x
|
921 |
+
|
922 |
+
|
923 |
+
class WukongClipTextEncoder(ModelMixin, ConfigMixin):
|
924 |
+
|
925 |
+
@register_to_config
|
926 |
+
def __init__(
|
927 |
+
self,
|
928 |
+
):
|
929 |
+
super().__init__()
|
930 |
+
self.model = TextTransformer()
|
931 |
+
|
932 |
+
def forward(
|
933 |
+
self,
|
934 |
+
tokens
|
935 |
+
):
|
936 |
+
z = self.model(tokens)
|
937 |
+
z = z / torch.linalg.norm(z, dim=-1, keepdim=True)
|
938 |
+
if z.ndim==2:
|
939 |
+
z = z.view((z.shape[0], 1, z.shape[1]))
|
940 |
+
return z
|
941 |
+
|
942 |
+
|
943 |
+
def make_layer(block, n_layers):
|
944 |
+
layers = []
|
945 |
+
for _ in range(n_layers):
|
946 |
+
layers.append(block())
|
947 |
+
return nn.Sequential(*layers)
|
948 |
+
|
949 |
+
|
950 |
+
class ResidualDenseBlock_5C(nn.Module):
|
951 |
+
def __init__(self, nf=64, gc=32, bias=True):
|
952 |
+
super(ResidualDenseBlock_5C, self).__init__()
|
953 |
+
# gc: growth channel, i.e. intermediate channels
|
954 |
+
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
955 |
+
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
956 |
+
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
957 |
+
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
958 |
+
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
959 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
960 |
+
|
961 |
+
# initialization
|
962 |
+
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
963 |
+
|
964 |
+
def forward(self, x):
|
965 |
+
x1 = self.lrelu(self.conv1(x))
|
966 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
967 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
968 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
969 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
970 |
+
return x5 * 0.2 + x
|
971 |
+
|
972 |
+
|
973 |
+
class RRDB(nn.Module):
|
974 |
+
'''Residual in Residual Dense Block'''
|
975 |
+
|
976 |
+
def __init__(self, nf, gc=32):
|
977 |
+
super(RRDB, self).__init__()
|
978 |
+
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
979 |
+
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
980 |
+
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
981 |
+
|
982 |
+
def forward(self, x):
|
983 |
+
out = self.RDB1(x)
|
984 |
+
out = self.RDB2(out)
|
985 |
+
out = self.RDB3(out)
|
986 |
+
return out * 0.2 + x
|
987 |
+
|
988 |
+
|
989 |
+
class RRDBNet(nn.Module):
|
990 |
+
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
|
991 |
+
super(RRDBNet, self).__init__()
|
992 |
+
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
993 |
+
|
994 |
+
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
995 |
+
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
996 |
+
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
997 |
+
#### upsampling
|
998 |
+
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
999 |
+
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
1000 |
+
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
1001 |
+
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
1002 |
+
|
1003 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
1004 |
+
|
1005 |
+
def forward(self, x):
|
1006 |
+
fea = self.conv_first(x)
|
1007 |
+
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
1008 |
+
fea = fea + trunk
|
1009 |
+
|
1010 |
+
fea = self.lrelu(self.upconv1(torch.nn.functional.interpolate(fea, scale_factor=2, mode='nearest')))
|
1011 |
+
fea = self.lrelu(self.upconv2(torch.nn.functional.interpolate(fea, scale_factor=2, mode='nearest')))
|
1012 |
+
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
1013 |
+
|
1014 |
+
return out
|
1015 |
+
|
1016 |
+
|
1017 |
+
class ESRGAN(ModelMixin, ConfigMixin):
|
1018 |
+
|
1019 |
+
@register_to_config
|
1020 |
+
def __init__(
|
1021 |
+
self,
|
1022 |
+
):
|
1023 |
+
super().__init__()
|
1024 |
+
self.model = RRDBNet(3, 3, 64, 23, gc=32)
|
1025 |
+
|
1026 |
+
def forward(
|
1027 |
+
self,
|
1028 |
+
img_LR
|
1029 |
+
):
|
1030 |
+
img_LR = img_LR[:,[2,1,0],:,:]
|
1031 |
+
img_LR = img_LR.to(self.device)
|
1032 |
+
with torch.no_grad():
|
1033 |
+
output = self.model(img_LR)
|
1034 |
+
output = output.data.float().clamp_(0, 1)
|
1035 |
+
output = output[:,[2,1,0],:,:]
|
1036 |
+
return output
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
+
title: PAI Diffusion (Poem)
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.11.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from LdmZhPipeline import LDMZhTextToImagePipeline
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_id = "alibaba-pai/pai-diffusion-food-large-zh"
|
9 |
+
|
10 |
+
pipe_text2img = LDMZhTextToImagePipeline.from_pretrained(model_id, use_auth_token="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")
|
11 |
+
pipe_text2img = pipe_text2img.to(device)
|
12 |
+
|
13 |
+
def infer_text2img(prompt, guide, steps):
|
14 |
+
output = pipe_text2img([prompt]*9, guidance_scale=guide, num_inference_steps=steps, use_sr=True)
|
15 |
+
images = output.images[0]
|
16 |
+
return images
|
17 |
+
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
examples = [
|
20 |
+
["番茄炒蛋"],
|
21 |
+
["草莓披萨"],
|
22 |
+
["韩式炸鸡"],
|
23 |
+
]
|
24 |
+
with gr.Row():
|
25 |
+
with gr.Column(scale=1, ):
|
26 |
+
image_out = gr.Image(label = '输出(output)')
|
27 |
+
with gr.Column(scale=1, ):
|
28 |
+
prompt = gr.Textbox(label = '提示词(prompt)')
|
29 |
+
submit_btn = gr.Button("生成图像(Generate)")
|
30 |
+
with gr.Row(scale=0.5 ):
|
31 |
+
guide = gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)')
|
32 |
+
steps = gr.Slider(10, 50, value = 20, step = 1, label = '迭代次数(inference steps)')
|
33 |
+
ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps], outputs=image_out)
|
34 |
+
submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps], outputs = image_out)
|
35 |
+
|
36 |
+
demo.queue(concurrency_count=1, max_size=8).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
diffusers==0.7.2
|
5 |
+
transformers
|
6 |
+
accelerate
|