Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
#from transformers import pipeline
|
3 |
+
#from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
+
from speechscore import SpeechScore
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
MODEL_NAME = "alibabasglab/speechscore"
|
8 |
+
BATCH_SIZE = 1
|
9 |
+
|
10 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
mySpeechScore = SpeechScore([
|
13 |
+
'SRMR'
|
14 |
+
])
|
15 |
+
|
16 |
+
|
17 |
+
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
18 |
+
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
19 |
+
if seconds is not None:
|
20 |
+
milliseconds = round(seconds * 1000.0)
|
21 |
+
|
22 |
+
hours = milliseconds // 3_600_000
|
23 |
+
milliseconds -= hours * 3_600_000
|
24 |
+
|
25 |
+
minutes = milliseconds // 60_000
|
26 |
+
milliseconds -= minutes * 60_000
|
27 |
+
|
28 |
+
seconds = milliseconds // 1_000
|
29 |
+
milliseconds -= seconds * 1_000
|
30 |
+
|
31 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
32 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
33 |
+
else:
|
34 |
+
# we have a malformed timestamp so just return it as is
|
35 |
+
return seconds
|
36 |
+
|
37 |
+
|
38 |
+
def score(file, task, return_timestamps):
|
39 |
+
scores = mySpeechScore(test_path=file, reference_path=None, window=None, score_rate=16000, return_mean=True)
|
40 |
+
return scores
|
41 |
+
|
42 |
+
|
43 |
+
demo = gr.Blocks()
|
44 |
+
|
45 |
+
mic_score = gr.Interface(
|
46 |
+
fn=score,
|
47 |
+
inputs=[
|
48 |
+
gr.Audio(sources=["microphone"],
|
49 |
+
waveform_options=gr.WaveformOptions(
|
50 |
+
waveform_color="#01C6FF",
|
51 |
+
waveform_progress_color="#0066B4",
|
52 |
+
skip_length=2,
|
53 |
+
show_controls=False,
|
54 |
+
),
|
55 |
+
),
|
56 |
+
gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"),
|
57 |
+
gr.Checkbox(default=False, label="Return timestamps"),
|
58 |
+
],
|
59 |
+
outputs="text",
|
60 |
+
layout="horizontal",
|
61 |
+
theme="huggingface",
|
62 |
+
title="Score speech from microphone",
|
63 |
+
description=(
|
64 |
+
"Score audio inputs with the click of a button! Demo uses the"
|
65 |
+
" commonly used speech quality assessment methods for the audio files"
|
66 |
+
" of arbitrary length."
|
67 |
+
),
|
68 |
+
allow_flagging="never",
|
69 |
+
)
|
70 |
+
|
71 |
+
file_score = gr.Interface(
|
72 |
+
fn=score,
|
73 |
+
inputs=[
|
74 |
+
gr.Audio(sources=["upload"], optional=True, label="Audio file", type="filepath"),
|
75 |
+
gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"),
|
76 |
+
gr.Checkbox(default=False, label="Return timestamps"),
|
77 |
+
],
|
78 |
+
outputs="text",
|
79 |
+
layout="horizontal",
|
80 |
+
theme="huggingface",
|
81 |
+
title="Score speech from a file",
|
82 |
+
description=(
|
83 |
+
"Score audio inputs with the click of a button! Demo uses the"
|
84 |
+
" commonly used speech quality assessment methods for the audio files"
|
85 |
+
" of arbitrary length."
|
86 |
+
),
|
87 |
+
examples=[
|
88 |
+
["./example.flac", "score", False],
|
89 |
+
["./example.flac", "score", True],
|
90 |
+
],
|
91 |
+
cache_examples=True,
|
92 |
+
allow_flagging="never",
|
93 |
+
)
|
94 |
+
|
95 |
+
with demo:
|
96 |
+
gr.TabbedInterface([mic_score, file_score], ["Score Microphone", "Score Audio File"])
|
97 |
+
|
98 |
+
demo.launch(enable_queue=True)
|