alibabasglab commited on
Commit
c3e6538
·
verified ·
1 Parent(s): 2d4b7ee

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ #from transformers import pipeline
3
+ #from transformers.pipelines.audio_utils import ffmpeg_read
4
+ from speechscore import SpeechScore
5
+ import gradio as gr
6
+
7
+ MODEL_NAME = "alibabasglab/speechscore"
8
+ BATCH_SIZE = 1
9
+
10
+ device = 0 if torch.cuda.is_available() else "cpu"
11
+
12
+ mySpeechScore = SpeechScore([
13
+ 'SRMR'
14
+ ])
15
+
16
+
17
+ # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
18
+ def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
19
+ if seconds is not None:
20
+ milliseconds = round(seconds * 1000.0)
21
+
22
+ hours = milliseconds // 3_600_000
23
+ milliseconds -= hours * 3_600_000
24
+
25
+ minutes = milliseconds // 60_000
26
+ milliseconds -= minutes * 60_000
27
+
28
+ seconds = milliseconds // 1_000
29
+ milliseconds -= seconds * 1_000
30
+
31
+ hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
32
+ return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
33
+ else:
34
+ # we have a malformed timestamp so just return it as is
35
+ return seconds
36
+
37
+
38
+ def score(file, task, return_timestamps):
39
+ scores = mySpeechScore(test_path=file, reference_path=None, window=None, score_rate=16000, return_mean=True)
40
+ return scores
41
+
42
+
43
+ demo = gr.Blocks()
44
+
45
+ mic_score = gr.Interface(
46
+ fn=score,
47
+ inputs=[
48
+ gr.Audio(sources=["microphone"],
49
+ waveform_options=gr.WaveformOptions(
50
+ waveform_color="#01C6FF",
51
+ waveform_progress_color="#0066B4",
52
+ skip_length=2,
53
+ show_controls=False,
54
+ ),
55
+ ),
56
+ gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"),
57
+ gr.Checkbox(default=False, label="Return timestamps"),
58
+ ],
59
+ outputs="text",
60
+ layout="horizontal",
61
+ theme="huggingface",
62
+ title="Score speech from microphone",
63
+ description=(
64
+ "Score audio inputs with the click of a button! Demo uses the"
65
+ " commonly used speech quality assessment methods for the audio files"
66
+ " of arbitrary length."
67
+ ),
68
+ allow_flagging="never",
69
+ )
70
+
71
+ file_score = gr.Interface(
72
+ fn=score,
73
+ inputs=[
74
+ gr.Audio(sources=["upload"], optional=True, label="Audio file", type="filepath"),
75
+ gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"),
76
+ gr.Checkbox(default=False, label="Return timestamps"),
77
+ ],
78
+ outputs="text",
79
+ layout="horizontal",
80
+ theme="huggingface",
81
+ title="Score speech from a file",
82
+ description=(
83
+ "Score audio inputs with the click of a button! Demo uses the"
84
+ " commonly used speech quality assessment methods for the audio files"
85
+ " of arbitrary length."
86
+ ),
87
+ examples=[
88
+ ["./example.flac", "score", False],
89
+ ["./example.flac", "score", True],
90
+ ],
91
+ cache_examples=True,
92
+ allow_flagging="never",
93
+ )
94
+
95
+ with demo:
96
+ gr.TabbedInterface([mic_score, file_score], ["Score Microphone", "Score Audio File"])
97
+
98
+ demo.launch(enable_queue=True)