File size: 9,428 Bytes
c3f7a0c
ee582b8
 
 
 
 
 
 
 
 
 
 
c3f7a0c
ee582b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from ucimlrepo import fetch_ucirepo

# Page configuration
st.set_page_config(
    page_title="Car Evaluation Analysis",
    page_icon="πŸš—",
    layout="wide"
)

# Title and introduction
st.title("πŸš— Car Evaluation Analysis Dashboard")
st.markdown("""
This dashboard analyzes car evaluation data using different machine learning models.
The dataset includes various car attributes and their evaluation classifications.
""")


# Load and prepare data
@st.cache_data
def load_data():
    car_evaluation = fetch_ucirepo(id=19)
    X, y = car_evaluation.data.features, car_evaluation.data.targets
    df = pd.concat([X, y], axis=1)
    return df, X, y


df, X, y = load_data()

# Sidebar
st.sidebar.header("Navigation")
page = st.sidebar.radio("Go to", ["Data Overview", "Exploratory Analysis", "Model Training", "Model Comparison"])

# Data Overview Page
if page == "Data Overview":
    st.header("Dataset Overview")

    # Display metrics in cards
    col1, col2, col3, col4 = st.columns(4)

    with col1:
        st.metric(
            label="Total Records",
            value=f"{len(df):,}"
        )

    with col2:
        st.metric(
            label="Features",
            value=len(df.columns) - 1
        )

    with col3:
        st.metric(
            label="Target Classes",
            value=len(df['class'].unique())
        )

    with col4:
        st.metric(
            label="Missing Values",
            value=df.isnull().sum().sum()
        )

    st.write("")

    # Sample Data
    st.subheader("Sample Data")
    st.dataframe(
        df.head(),
        use_container_width=True,
        height=230
    )

    # Target Class Distribution
    st.subheader("Target Class Distribution")

    col1, col2 = st.columns([2, 1])

    with col1:
        fig, ax = plt.subplots(figsize=(10, 6))
        sns.countplot(data=df, x='class', palette='viridis')
        plt.title('Distribution of Car Evaluations')
        st.pyplot(fig)

    with col2:
        st.write("")
        st.write("")
        class_distribution = df['class'].value_counts()
        for class_name, count in class_distribution.items():
            st.metric(
                label=class_name,
                value=count
            )

# Exploratory Analysis Page
elif page == "Exploratory Analysis":
    st.header("Exploratory Data Analysis")

    # Feature Distribution
    st.subheader("Feature Distributions")
    feature_to_plot = st.selectbox("Select Feature", df.columns[:-1])

    fig, ax = plt.subplots(figsize=(10, 6))
    sns.countplot(data=df, x=feature_to_plot, palette='coolwarm')
    plt.title(f'Distribution of {feature_to_plot}')
    plt.xticks(rotation=45)
    st.pyplot(fig)

    # Feature vs Target
    st.subheader("Feature vs Target Class")
    fig, ax = plt.subplots(figsize=(12, 6))
    sns.countplot(data=df, x=feature_to_plot, hue='class', palette='Set2')
    plt.title(f'{feature_to_plot} Distribution by Class')
    plt.xticks(rotation=45)
    st.pyplot(fig)

    # Correlation Heatmap
    st.subheader("Correlation Heatmap")
    encoded_df = pd.get_dummies(df, drop_first=True)
    fig, ax = plt.subplots(figsize=(12, 8))
    sns.heatmap(encoded_df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
    plt.title('Correlation Heatmap of Encoded Features')
    st.pyplot(fig)

# Model Training Page
elif page == "Model Training":
    st.header("Model Training and Evaluation")

    # Data preprocessing
    encoder = OneHotEncoder(sparse_output=False)
    X_encoded = encoder.fit_transform(X)
    y_encoded = y.values.ravel()

    # Train-test split
    test_size = st.slider("Select Test Size", 0.1, 0.4, 0.2, 0.05)
    X_train, X_test, y_train, y_test = train_test_split(
        X_encoded, y_encoded, test_size=test_size, random_state=42
    )

    # Model selection
    model_choice = st.selectbox(
        "Select Model",
        ["Support Vector Machine", "Random Forest", "Logistic Regression"]
    )

    if st.button("Train Model"):
        with st.spinner("Training model..."):
            if model_choice == "Support Vector Machine":
                model = SVC(kernel='linear', random_state=42)
            elif model_choice == "Random Forest":
                model = RandomForestClassifier(n_estimators=100, random_state=42)
            else:
                model = LogisticRegression(max_iter=500, random_state=42)

            model.fit(X_train, y_train)
            y_pred = model.predict(X_test)

            # Display results
            col1, col2 = st.columns(2)

            with col1:
                st.subheader("Model Performance")
                accuracy = accuracy_score(y_test, y_pred)
                st.metric(label="Accuracy", value=f"{accuracy:.4f}")
                st.text("Classification Report:")
                st.text(classification_report(y_test, y_pred))

            with col2:
                st.subheader("Confusion Matrix")
                fig, ax = plt.subplots(figsize=(8, 6))
                sns.heatmap(
                    confusion_matrix(y_test, y_pred),
                    annot=True,
                    fmt='d',
                    cmap='Blues',
                    xticklabels=np.unique(y_test),
                    yticklabels=np.unique(y_test)
                )
                plt.title(f'{model_choice} Confusion Matrix')
                plt.xlabel('Predicted')
                plt.ylabel('Actual')
                st.pyplot(fig)

            # Feature importance for Random Forest
            if model_choice == "Random Forest":
                st.subheader("Feature Importance")
                feature_importance = pd.DataFrame({
                    'feature': encoder.get_feature_names_out(),
                    'importance': model.feature_importances_
                })
                feature_importance = feature_importance.sort_values(
                    'importance', ascending=False
                ).head(10)

                fig, ax = plt.subplots(figsize=(10, 6))
                sns.barplot(
                    data=feature_importance,
                    x='importance',
                    y='feature'
                )
                plt.title('Top 10 Most Important Features')
                st.pyplot(fig)

# Model Comparison Page
else:
    st.header("Model Comparison")

    if st.button("Compare All Models"):
        with st.spinner("Training all models..."):
            # Data preprocessing
            encoder = OneHotEncoder(sparse_output=False)
            X_encoded = encoder.fit_transform(X)
            y_encoded = y.values.ravel()

            # Train-test split
            X_train, X_test, y_train, y_test = train_test_split(
                X_encoded, y_encoded, test_size=0.2, random_state=42
            )

            # Train all models
            models = {
                "SVM": SVC(kernel='linear', random_state=42),
                "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
                "Logistic Regression": LogisticRegression(max_iter=500, random_state=42)
            }

            results = {}
            for name, model in models.items():
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)
                results[name] = {
                    'accuracy': accuracy_score(y_test, y_pred),
                    'predictions': y_pred
                }

            # Display comparison results
            st.subheader("Accuracy Comparison")
            accuracy_df = pd.DataFrame({
                'Model': list(results.keys()),
                'Accuracy': [results[model]['accuracy'] for model in results.keys()]
            })

            col1, col2 = st.columns(2)

            with col1:
                st.dataframe(accuracy_df)

            with col2:
                fig, ax = plt.subplots(figsize=(10, 6))
                sns.barplot(
                    data=accuracy_df,
                    x='Model',
                    y='Accuracy',
                    palette='viridis'
                )
                plt.title('Model Accuracy Comparison')
                plt.ylim(0, 1)
                st.pyplot(fig)

            # Detailed model comparison
            st.subheader("Detailed Model Performance")
            for name in results.keys():
                st.write(f"\n{name}:")
                st.text(classification_report(y_test, results[name]['predictions']))

                fig, ax = plt.subplots(figsize=(8, 6))
                sns.heatmap(
                    confusion_matrix(y_test, results[name]['predictions']),
                    annot=True,
                    fmt='d',
                    cmap='Blues',
                    xticklabels=np.unique(y_test),
                    yticklabels=np.unique(y_test)
                )
                plt.title(f'{name} Confusion Matrix')
                plt.xlabel('Predicted')
                plt.ylabel('Actual')
                st.pyplot(fig)

# Footer
st.markdown("""
---
Created with ❀️ using Streamlit
""")