File size: 9,428 Bytes
c3f7a0c ee582b8 c3f7a0c ee582b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from ucimlrepo import fetch_ucirepo
# Page configuration
st.set_page_config(
page_title="Car Evaluation Analysis",
page_icon="π",
layout="wide"
)
# Title and introduction
st.title("π Car Evaluation Analysis Dashboard")
st.markdown("""
This dashboard analyzes car evaluation data using different machine learning models.
The dataset includes various car attributes and their evaluation classifications.
""")
# Load and prepare data
@st.cache_data
def load_data():
car_evaluation = fetch_ucirepo(id=19)
X, y = car_evaluation.data.features, car_evaluation.data.targets
df = pd.concat([X, y], axis=1)
return df, X, y
df, X, y = load_data()
# Sidebar
st.sidebar.header("Navigation")
page = st.sidebar.radio("Go to", ["Data Overview", "Exploratory Analysis", "Model Training", "Model Comparison"])
# Data Overview Page
if page == "Data Overview":
st.header("Dataset Overview")
# Display metrics in cards
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
label="Total Records",
value=f"{len(df):,}"
)
with col2:
st.metric(
label="Features",
value=len(df.columns) - 1
)
with col3:
st.metric(
label="Target Classes",
value=len(df['class'].unique())
)
with col4:
st.metric(
label="Missing Values",
value=df.isnull().sum().sum()
)
st.write("")
# Sample Data
st.subheader("Sample Data")
st.dataframe(
df.head(),
use_container_width=True,
height=230
)
# Target Class Distribution
st.subheader("Target Class Distribution")
col1, col2 = st.columns([2, 1])
with col1:
fig, ax = plt.subplots(figsize=(10, 6))
sns.countplot(data=df, x='class', palette='viridis')
plt.title('Distribution of Car Evaluations')
st.pyplot(fig)
with col2:
st.write("")
st.write("")
class_distribution = df['class'].value_counts()
for class_name, count in class_distribution.items():
st.metric(
label=class_name,
value=count
)
# Exploratory Analysis Page
elif page == "Exploratory Analysis":
st.header("Exploratory Data Analysis")
# Feature Distribution
st.subheader("Feature Distributions")
feature_to_plot = st.selectbox("Select Feature", df.columns[:-1])
fig, ax = plt.subplots(figsize=(10, 6))
sns.countplot(data=df, x=feature_to_plot, palette='coolwarm')
plt.title(f'Distribution of {feature_to_plot}')
plt.xticks(rotation=45)
st.pyplot(fig)
# Feature vs Target
st.subheader("Feature vs Target Class")
fig, ax = plt.subplots(figsize=(12, 6))
sns.countplot(data=df, x=feature_to_plot, hue='class', palette='Set2')
plt.title(f'{feature_to_plot} Distribution by Class')
plt.xticks(rotation=45)
st.pyplot(fig)
# Correlation Heatmap
st.subheader("Correlation Heatmap")
encoded_df = pd.get_dummies(df, drop_first=True)
fig, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(encoded_df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
plt.title('Correlation Heatmap of Encoded Features')
st.pyplot(fig)
# Model Training Page
elif page == "Model Training":
st.header("Model Training and Evaluation")
# Data preprocessing
encoder = OneHotEncoder(sparse_output=False)
X_encoded = encoder.fit_transform(X)
y_encoded = y.values.ravel()
# Train-test split
test_size = st.slider("Select Test Size", 0.1, 0.4, 0.2, 0.05)
X_train, X_test, y_train, y_test = train_test_split(
X_encoded, y_encoded, test_size=test_size, random_state=42
)
# Model selection
model_choice = st.selectbox(
"Select Model",
["Support Vector Machine", "Random Forest", "Logistic Regression"]
)
if st.button("Train Model"):
with st.spinner("Training model..."):
if model_choice == "Support Vector Machine":
model = SVC(kernel='linear', random_state=42)
elif model_choice == "Random Forest":
model = RandomForestClassifier(n_estimators=100, random_state=42)
else:
model = LogisticRegression(max_iter=500, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Display results
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Performance")
accuracy = accuracy_score(y_test, y_pred)
st.metric(label="Accuracy", value=f"{accuracy:.4f}")
st.text("Classification Report:")
st.text(classification_report(y_test, y_pred))
with col2:
st.subheader("Confusion Matrix")
fig, ax = plt.subplots(figsize=(8, 6))
sns.heatmap(
confusion_matrix(y_test, y_pred),
annot=True,
fmt='d',
cmap='Blues',
xticklabels=np.unique(y_test),
yticklabels=np.unique(y_test)
)
plt.title(f'{model_choice} Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
st.pyplot(fig)
# Feature importance for Random Forest
if model_choice == "Random Forest":
st.subheader("Feature Importance")
feature_importance = pd.DataFrame({
'feature': encoder.get_feature_names_out(),
'importance': model.feature_importances_
})
feature_importance = feature_importance.sort_values(
'importance', ascending=False
).head(10)
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(
data=feature_importance,
x='importance',
y='feature'
)
plt.title('Top 10 Most Important Features')
st.pyplot(fig)
# Model Comparison Page
else:
st.header("Model Comparison")
if st.button("Compare All Models"):
with st.spinner("Training all models..."):
# Data preprocessing
encoder = OneHotEncoder(sparse_output=False)
X_encoded = encoder.fit_transform(X)
y_encoded = y.values.ravel()
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
X_encoded, y_encoded, test_size=0.2, random_state=42
)
# Train all models
models = {
"SVM": SVC(kernel='linear', random_state=42),
"Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
"Logistic Regression": LogisticRegression(max_iter=500, random_state=42)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
results[name] = {
'accuracy': accuracy_score(y_test, y_pred),
'predictions': y_pred
}
# Display comparison results
st.subheader("Accuracy Comparison")
accuracy_df = pd.DataFrame({
'Model': list(results.keys()),
'Accuracy': [results[model]['accuracy'] for model in results.keys()]
})
col1, col2 = st.columns(2)
with col1:
st.dataframe(accuracy_df)
with col2:
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(
data=accuracy_df,
x='Model',
y='Accuracy',
palette='viridis'
)
plt.title('Model Accuracy Comparison')
plt.ylim(0, 1)
st.pyplot(fig)
# Detailed model comparison
st.subheader("Detailed Model Performance")
for name in results.keys():
st.write(f"\n{name}:")
st.text(classification_report(y_test, results[name]['predictions']))
fig, ax = plt.subplots(figsize=(8, 6))
sns.heatmap(
confusion_matrix(y_test, results[name]['predictions']),
annot=True,
fmt='d',
cmap='Blues',
xticklabels=np.unique(y_test),
yticklabels=np.unique(y_test)
)
plt.title(f'{name} Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
st.pyplot(fig)
# Footer
st.markdown("""
---
Created with β€οΈ using Streamlit
""") |