|
import numpy as np |
|
import gradio as gr |
|
import tensorflow as tf |
|
import cv2 |
|
|
|
|
|
title = "Welcome to your first sketch recognition app!" |
|
|
|
|
|
head = ( |
|
"<center>" |
|
"<img src='./mnist-classes.png' width=400>" |
|
"<p>The model is trained to classify numbers (from 0 to 9). " |
|
"To test it, draw your number in the space provided.</p>" |
|
"</center>" |
|
) |
|
|
|
|
|
ref = "Find the complete code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)." |
|
|
|
|
|
|
|
labels = { |
|
0: "zero", |
|
1: "one", |
|
2: "two", |
|
3: "three", |
|
4: "four", |
|
5: "five", |
|
6: "six", |
|
7: "seven", |
|
8: "eight", |
|
9: "nine" |
|
} |
|
|
|
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5") |
|
|
|
def predict(data): |
|
|
|
img = np.array(data['composite']) |
|
|
|
|
|
print("non-zero values", np.count_nonzero(img)) |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
for k in range(img.shape[2]): |
|
if img[i][j][k] != 0: |
|
print("img[i][j][k]", img[i][j][k]) |
|
|
|
print("img.shape", img.shape) |
|
|
|
|
|
if img.shape[-1] == 4: |
|
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) |
|
if img.shape[-1] == 3: |
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
|
|
|
|
img = cv2.resize(img, (28, 28)) |
|
|
|
|
|
img = img / 255.0 |
|
|
|
|
|
img = img.reshape(1, 28, 28, 1) |
|
|
|
print("img", img) |
|
|
|
|
|
preds = model.predict(img)[0] |
|
|
|
print("preds", preds) |
|
values_map = {preds[i]: i for i in range(len(preds))} |
|
|
|
sorted_values = sorted(preds, reverse=True) |
|
|
|
labels_map = dict() |
|
for i in range(3): |
|
print("sorted_values[i]", sorted_values[i], values_map[sorted_values[i]]) |
|
labels_map[labels[values_map[sorted_values[i]]]] = sorted_values[i] |
|
|
|
print("labels_map", labels_map) |
|
return labels_map |
|
|
|
|
|
label = gr.Label(num_top_classes=3) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Sketchpad(type='numpy', image_mode='L', brush=gr.Brush()), |
|
outputs=label, |
|
title=title, |
|
description=head, |
|
article=ref |
|
) |
|
interface.launch(share=True) |