mnist / app.py
alibayram's picture
Refactor prediction function: enhance image preprocessing, convert to grayscale, and update model input handling
cf0b1f5
raw
history blame
2.37 kB
import numpy as np
import gradio as gr
import tensorflow as tf
import cv2
# App title
title = "Welcome to your first sketch recognition app!"
# App description
head = (
"<center>"
"<img src='./mnist-classes.png' width=400>"
"<p>The model is trained to classify numbers (from 0 to 9). "
"To test it, draw your number in the space provided.</p>"
"</center>"
)
# GitHub repository link
ref = "Find the complete code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
# Class names (from 0 to 9)
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
# Load model (trained on MNIST dataset)
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
""" # Prediction function for sketch recognition
def predict(data):
print(data['composite'].shape)
# Reshape image to 28x28
img = np.reshape(data['composite'], (1, img_size, img_size, 1))
# Make prediction
pred = model.predict(img)
# Get top class
top_3_classes = np.argsort(pred[0])[-3:][::-1]
# Get top 3 probabilities
top_3_probs = pred[0][top_3_classes]
# Get class names
class_names = [labels[i] for i in top_3_classes]
# Return class names and probabilities
return {class_names[i]: top_3_probs[i] for i in range(3)} """
def predict(data):
# Extract the 'image' key from the input dictionary
img = data['image']
# Convert to NumPy array
img = np.array(img)
# Handle RGBA or RGB images
if img.shape[-1] == 4: # RGBA
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
if img.shape[-1] == 3: # RGB
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Resize image to 28x28
img = cv2.resize(img, (28, 28))
# Normalize pixel values to [0, 1]
img = img / 255.0
# Reshape to match model input
img = img.reshape(1, 28, 28, 1)
# Model predictions
preds = model.predict(img)[0]
# Return the probability for each class
return {label: float(pred) for label, pred in zip(labels, preds)}
# Top 3 classes
label = gr.Label(num_top_classes=3)
# Open Gradio interface for sketch recognition
interface = gr.Interface(
fn=predict,
inputs=gr.Sketchpad(type='numpy'),
outputs=label,
title=title,
description=head,
article=ref
)
interface.launch(share=True)