Refactor prediction function: streamline prediction logic and update return format to include probabilities for all classes
Browse files
app.py
CHANGED
@@ -25,22 +25,6 @@ labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight"
|
|
25 |
# Load model (trained on MNIST dataset)
|
26 |
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
|
27 |
|
28 |
-
""" # Prediction function for sketch recognition
|
29 |
-
def predict(data):
|
30 |
-
print(data['composite'].shape)
|
31 |
-
# Reshape image to 28x28
|
32 |
-
img = np.reshape(data['composite'], (1, img_size, img_size, 1))
|
33 |
-
# Make prediction
|
34 |
-
pred = model.predict(img)
|
35 |
-
# Get top class
|
36 |
-
top_3_classes = np.argsort(pred[0])[-3:][::-1]
|
37 |
-
# Get top 3 probabilities
|
38 |
-
top_3_probs = pred[0][top_3_classes]
|
39 |
-
# Get class names
|
40 |
-
class_names = [labels[i] for i in top_3_classes]
|
41 |
-
# Return class names and probabilities
|
42 |
-
return {class_names[i]: top_3_probs[i] for i in range(3)} """
|
43 |
-
|
44 |
def predict(data):
|
45 |
# Extract the 'composite' key from the input dictionary
|
46 |
img = data['composite']
|
@@ -63,20 +47,18 @@ def predict(data):
|
|
63 |
img = img.reshape(1, 28, 28, 1)
|
64 |
|
65 |
# Model predictions
|
66 |
-
preds = model.predict(img)
|
67 |
-
|
68 |
-
print(preds)
|
69 |
-
|
70 |
-
preds = preds[0]
|
71 |
-
print(preds)
|
72 |
|
73 |
top_3_classes = np.argsort(preds)[-3:][::-1]
|
74 |
top_3_probs = preds[top_3_classes]
|
75 |
|
76 |
class_names = [labels[i] for i in top_3_classes]
|
77 |
|
78 |
-
print(class_names, top_3_probs, top_3_classes)
|
79 |
|
|
|
|
|
|
|
80 |
return {class_names[i]: top_3_probs[i] for i in range(3)}
|
81 |
|
82 |
# Top 3 classes
|
|
|
25 |
# Load model (trained on MNIST dataset)
|
26 |
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def predict(data):
|
29 |
# Extract the 'composite' key from the input dictionary
|
30 |
img = data['composite']
|
|
|
47 |
img = img.reshape(1, 28, 28, 1)
|
48 |
|
49 |
# Model predictions
|
50 |
+
preds = model.predict(img)[0]
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
top_3_classes = np.argsort(preds)[-3:][::-1]
|
53 |
top_3_probs = preds[top_3_classes]
|
54 |
|
55 |
class_names = [labels[i] for i in top_3_classes]
|
56 |
|
57 |
+
print("class_names, top_3_probs, top_3_classes" , class_names, top_3_probs, top_3_classes)
|
58 |
|
59 |
+
""" return {class_names[i]: top_3_probs[i] for i in range(3)} """
|
60 |
+
""" # return the probability for each classe
|
61 |
+
return {label: float(pred) for label, pred in zip(labels, preds)} """
|
62 |
return {class_names[i]: top_3_probs[i] for i in range(3)}
|
63 |
|
64 |
# Top 3 classes
|