Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from PIL import Image
|
6 |
+
from ultralytics.utils.plotting import Annotator,colors
|
7 |
+
|
8 |
+
|
9 |
+
model = YOLO('Dental_model.pt') # Replace 'yolov8n.pt' with your model file if using a custom one
|
10 |
+
|
11 |
+
names=model.model.names
|
12 |
+
def detect_objects(image):
|
13 |
+
image1=image.copy()
|
14 |
+
results = model.predict(image)
|
15 |
+
whole=results[0].plot()
|
16 |
+
classes=results[0].boxes.cls.cpu().tolist()
|
17 |
+
boxes=results[0].boxes.xyxy.cpu()
|
18 |
+
annotator = Annotator(image, line_width=3)
|
19 |
+
annotator1=Annotator(image1, line_width=3)
|
20 |
+
for box,cls in zip(boxes,classes):
|
21 |
+
annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
|
22 |
+
annotator1.box_label(box, label=None, color=colors(int(cls)))
|
23 |
+
return Image.fromarray(annotator.result()),Image.fromarray(annotator1.result())
|
24 |
+
|
25 |
+
# Gradio Interface
|
26 |
+
title = "YOLOv8 Object Detection"
|
27 |
+
description = "Upload an image to detect objects using a YOLOv8 model."
|
28 |
+
|
29 |
+
gradio_app =gr.Interface(fn=detect_objects,
|
30 |
+
inputs=gr.Image(type="pil"),
|
31 |
+
outputs=[gr.Image(type='pil', label="Dental Analysis"),
|
32 |
+
gr.Image(type='pil', label="Dental Analysis")])
|
33 |
+
|
34 |
+
if __name__=="__main__":
|
35 |
+
gradio_app.launch(server_name="0.0.0.0", server_port=7861, share=True, show_error=False)
|