Spaces:
Runtime error
Runtime error
File size: 16,081 Bytes
9a0bb92 fe73fc1 9a0bb92 fe73fc1 9a0bb92 fe73fc1 9a0bb92 78506fe 9a0bb92 95bdd33 78506fe 76e32d2 c4be8c2 26548b4 9a0bb92 78506fe 5edca44 c2401c0 26548b4 f77e7f8 26548b4 26de42f 26548b4 26de42f 26548b4 26de42f 26548b4 f77e7f8 26548b4 77987e2 26548b4 77987e2 26548b4 fe73fc1 26548b4 e2eb8eb e33e382 e2eb8eb 9969ce7 e2eb8eb e33e382 e2eb8eb 78506fe e33e382 e2eb8eb fe73fc1 45523be e2eb8eb 78506fe dbf8ff3 78506fe 26548b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# 필요한 라이브러리 임포트
import gradio as gr
import random
import json
import os
import re
from datetime import datetime
from huggingface_hub import InferenceClient
import subprocess
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
import random
import openai # OpenAI API 라이브러리 추가
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# OpenAI API 클라이언트 설정
openai.api_key = os.getenv("OPENAI_API_KEY")
# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
# Florence caption function
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
# JSON 파일 로드 함수
def load_json_file(file_name):
file_path = os.path.join("data", file_name)
with open(file_path, "r") as file:
return json.load(file)
ARTFORM = load_json_file("artform.json")
PHOTO_TYPE = load_json_file("photo_type.json")
BODY_TYPES = load_json_file("body_types.json")
DEFAULT_TAGS = load_json_file("default_tags.json")
ROLES = load_json_file("roles.json")
HAIRSTYLES = load_json_file("hairstyles.json")
ADDITIONAL_DETAILS = load_json_file("additional_details.json")
PHOTOGRAPHY_STYLES = load_json_file("photography_styles.json")
DEVICE = load_json_file("device.json")
PHOTOGRAPHER = load_json_file("photographer.json")
ARTIST = load_json_file("artist.json")
DIGITAL_ARTFORM = load_json_file("digital_artform.json")
PLACE = load_json_file("place.json")
LIGHTING = load_json_file("lighting.json")
CLOTHING = load_json_file("clothing.json")
COMPOSITION = load_json_file("composition.json")
POSE = load_json_file("pose.json")
BACKGROUND = load_json_file("background.json")
# PromptGenerator 클래스 정의
class PromptGenerator:
def __init__(self, seed=None):
self.rng = random.Random(seed)
def split_and_choose(self, input_str):
choices = [choice.strip() for choice in input_str.split(",")]
return self.rng.choices(choices, k=1)[0]
def get_choice(self, input_str, default_choices):
if input_str.lower() == "disabled":
return ""
elif "," in input_str:
return self.split_and_choose(input_str)
elif input_str.lower() == "random":
return self.rng.choices(default_choices, k=1)[0]
else:
return input_str
def clean_consecutive_commas(self, input_string):
cleaned_string = re.sub(r',\s*,', ',', input_string)
return cleaned_string
def process_string(self, replaced, seed):
replaced = re.sub(r'\s*,\s*', ',', replaced)
replaced = re.sub(r',+', ',', replaced)
original = replaced
first_break_clipl_index = replaced.find("BREAK_CLIPL")
second_break_clipl_index = replaced.find("BREAK_CLIPL", first_break_clipl_index + len("BREAK_CLIPL"))
if first_break_clipl_index != -1 and second_break_clipl_index != -1:
clip_content_l = replaced[first_break_clipl_index + len("BREAK_CLIPL"):second_break_clipl_index]
replaced = replaced[:first_break_clipl_index].strip(", ") + replaced[second_break_clipl_index + len("BREAK_CLIPL"):].strip(", ")
clip_l = clip_content_l
else:
clip_l = ""
first_break_clipg_index = replaced.find("BREAK_CLIPG")
second_break_clipg_index = replaced.find("BREAK_CLIPG", first_break_clipg_index + len("BREAK_CLIPG"))
if first_break_clipg_index != -1 and second_break_clipg_index != -1:
clip_content_g = replaced[first_break_clipg_index + len("BREAK_CLIPG"):second_break_clipg_index]
replaced = replaced[:first_break_clipg_index].strip(", ") + replaced[second_break_clipg_index + len("BREAK_CLIPG"):].strip(", ")
clip_g = clip_content_g
else:
clip_g = ""
t5xxl = replaced
original = original.replace("BREAK_CLIPL", "").replace("BREAK_CLIPG", "")
original = re.sub(r'\s*,\s*', ',', original)
original = re.sub(r',+', ',', original)
clip_l = re.sub(r'\s*,\s*', ',', clip_l)
clip_l = re.sub(r',+', ',', clip_l)
clip_g = re.sub(r'\s*,\s*', ',', clip_g)
clip_g = re.sub(r',+', ',', clip_g)
if clip_l.startswith(","):
clip_l = clip_l[1:]
if clip_g.startswith(","):
clip_g = clip_g[1:]
if original.startswith(","):
original = original[1:]
if t5xxl.startswith(","):
t5xxl = t5xxl[1:]
return original, seed, t5xxl, clip_l, clip_g
def generate_prompt(self, seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
additional_details, photography_styles, device, photographer, artist, digital_artform,
place, lighting, clothing, composition, pose, background, input_image):
# 생략된 기능들...
pass
def add_caption_to_prompt(self, prompt, caption):
if caption:
return f"{prompt}, {caption}"
return prompt
# HuggingFace 모델을 사용한 텍스트 생성 클래스 정의
class HuggingFaceInferenceNode:
def __init__(self):
self.clients = {
"Mixtral": InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO"),
"Mistral": InferenceClient("mistralai/Mistral-7B-Instruct-v0.3"),
"Llama 3": InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct"),
"Mistral-Nemo": InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
}
self.prompts_dir = "./prompts"
os.makedirs(self.prompts_dir, exist_ok=True)
def save_prompt(self, prompt):
filename_text = "hf_" + prompt.split(',')[0].strip()
filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
filename_text = filename_text[:30]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_filename = f"{filename_text}_{timestamp}.txt"
filename = os.path.join(self.prompts_dir, base_filename)
with open(filename, "w") as file:
file.write(prompt)
print(f"Prompt saved to {filename}")
def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
# 생략된 기능들...
pass
# gpt-4o-mini와 Cohere Command R+를 사용한 프롬프트 생성 함수
def call_gpt4o_mini(content, system_message, max_tokens=1000, temperature=0.7, top_p=1):
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": content},
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
def call_cohere(content, temperature=0.7, max_tokens=1000):
response = openai.ChatCompletion.create(
model="Cohere-Command-R+",
messages=[
{"role": "user", "content": content},
],
max_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message['content']
# Gradio 인터페이스 생성 함수
def create_interface():
prompt_generator = PromptGenerator() # PromptGenerator 클래스가 정의되었으므로 사용 가능
huggingface_node = HuggingFaceInferenceNode()
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
gr.HTML("""<h1 align="center">FLUX 프롬프트 생성기</h1>
<p><center>이미지 또는 간단한 텍스트에서 긴 프롬프트를 생성합니다. 짧은 프롬프트를 개선합니다.</center></p>""")
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("기본 설정"):
seed = gr.Number(label="시드", value=random.randint(0, 1000000))
custom = gr.Textbox(label="사용자 정의 입력 프롬프트 (선택사항)")
subject = gr.Textbox(label="주제 (선택사항)")
global_option = gr.Radio(["비활성화", "랜덤"], label="모든 옵션 설정:", value="비활성화")
with gr.Accordion("예술 형식 및 사진 유형", open=False):
artform = gr.Dropdown(["비활성화", "랜덤"] + ARTFORM, label="예술 형식", value="비활성화")
photo_type = gr.Dropdown(["비활성화", "랜덤"] + PHOTO_TYPE, label="사진 유형", value="비활성화")
with gr.Accordion("캐릭터 세부사항", open=False):
body_types = gr.Dropdown(["비활성화", "랜덤"] + BODY_TYPES, label="체형", value="비활성화")
default_tags = gr.Dropdown(["비활성화", "랜덤"] + DEFAULT_TAGS, label="기본 태그", value="비활성화")
roles = gr.Dropdown(["비활성화", "랜덤"] + ROLES, label="역할", value="비활성화")
hairstyles = gr.Dropdown(["비활성화", "랜덤"] + HAIRSTYLES, label="헤어스타일", value="비활성화")
clothing = gr.Dropdown(["비활성화", "랜덤"] + CLOTHING, label="의상", value="비활성화")
with gr.Accordion("장면 세부사항", open=False):
place = gr.Dropdown(["비활성화", "랜덤"] + PLACE, label="장소", value="비활성화")
lighting = gr.Dropdown(["비활성화", "랜덤"] + LIGHTING, label="조명", value="비활성화")
composition = gr.Dropdown(["비활성화", "랜덤"] + COMPOSITION, label="구성", value="비활성화")
pose = gr.Dropdown(["비활성화", "랜덤"] + POSE, label="포즈", value="비활성화")
background = gr.Dropdown(["비활성화", "랜덤"] + BACKGROUND, label="배경", value="비활성화")
with gr.Accordion("스타일 및 아티스트", open=False):
additional_details = gr.Dropdown(["비활성화", "랜덤"] + ADDITIONAL_DETAILS, label="추가 세부 사항", value="비활성화")
photography_styles = gr.Dropdown(["비활성화", "랜덤"] + PHOTOGRAPHY_STYLES, label="사진 스타일", value="비활성화")
device = gr.Dropdown(["비활성화", "랜덤"] + DEVICE, label="장비", value="비활성화")
photographer = gr.Dropdown(["비활성화", "랜덤"] + PHOTOGRAPHER, label="사진작가", value="비활성화")
artist = gr.Dropdown(["비활성화", "랜덤"] + ARTIST, label="아티스트", value="비활성화")
digital_artform = gr.Dropdown(["비활성화", "랜덤"] + DIGITAL_ARTFORM, label="디지털 예술 형식", value="비활성화")
generate_button = gr.Button("프롬프트 생성")
with gr.Column(scale=2):
with gr.Accordion("이미지 및 설명", open=False):
input_image = gr.Image(label="입력 이미지 (선택사항)")
caption_output = gr.Textbox(label="생성된 설명", lines=3)
create_caption_button = gr.Button("설명 생성")
add_caption_button = gr.Button("프롬프트에 설명 추가")
with gr.Accordion("프롬프트 생성", open=True):
output = gr.Textbox(label="생성된 프롬프트 / 입력 텍스트", lines=4)
t5xxl_output = gr.Textbox(label="T5XXL 출력", visible=True)
clip_l_output = gr.Textbox(label="CLIP L 출력", visible=True)
clip_g_output = gr.Textbox(label="CLIP G 출력", visible=True)
with gr.Column(scale=2):
with gr.Accordion("LLM을 사용한 프롬프트 생성", open=False):
model = gr.Dropdown(["Mixtral", "Mistral", "Llama 3", "Mistral-Nemo", "gpt-4o-mini", "Cohere-Command-R+"], label="모델", value="Llama 3")
happy_talk = gr.Checkbox(label="행복한 대화", value=True)
compress = gr.Checkbox(label="압축", value=True)
compression_level = gr.Radio(["부드럽게", "중간", "강하게"], label="압축 레벨", value="강하게")
poster = gr.Checkbox(label="포스터 형식", value=False)
custom_base_prompt = gr.Textbox(label="사용자 정의 기본 프롬프트", lines=5)
generate_text_button = gr.Button("LLM으로 프롬프트 생성")
text_output = gr.Textbox(label="생성된 텍스트", lines=10)
def create_caption(image):
if image is not None:
return florence_caption(image)
return ""
create_caption_button.click(
create_caption,
inputs=[input_image],
outputs=[caption_output]
)
generate_button.click(
prompt_generator.generate_prompt,
inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
additional_details, photography_styles, device, photographer, artist, digital_artform,
place, lighting, clothing, composition, pose, background],
outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
)
add_caption_button.click(
prompt_generator.add_caption_to_prompt,
inputs=[output, caption_output],
outputs=[output]
)
generate_text_button.click(
lambda model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt: call_gpt4o_mini(input_text, custom_base_prompt) if model == "gpt-4o-mini" else call_cohere(input_text),
inputs=[model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
outputs=text_output
)
def update_all_options(choice):
return {dropdown: gr.update(value=choice) for dropdown in [
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]}
global_option.change(
update_all_options,
inputs=[global_option],
outputs=[
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|