|
import streamlit as st |
|
import pandas as pd |
|
import pickle |
|
|
|
model = pickle.load(open('logreg_model.pkl', 'rb')) |
|
st.title('Iris Variety Prediction') |
|
|
|
with st.form(key='form_parameters'): |
|
sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0) |
|
sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0) |
|
petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0) |
|
petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1) |
|
st.markdown('---') |
|
submitted = st.form_submit_button('Predict') |
|
|
|
data_inf = { |
|
'sepal.length': sepal_length, |
|
'sepal.width': sepal_width, |
|
'petal.length': petal_length, |
|
'petal.width': petal_width |
|
} |
|
data_inf = pd.DataFrame([data_inf]) |
|
if submitted: |
|
|
|
y_pred_inf = model.predict(data_inf) |
|
st.write('## Iris Variety = '+ str(y_pred_inf)) |