Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel | |
import transformers | |
import gradio as gr | |
assert ( | |
"LlamaTokenizer" in transformers._import_structure["models.llama"] | |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig | |
BASE_MODEL = "decapoda-research/llama-7b-hf" | |
LORA_WEIGHTS = "Yasbok/Alpaca_instruction_fine_tune_Arabic" | |
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: | |
pass | |
if device == "cuda": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
load_in_8bit=False, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained( | |
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True | |
) | |
elif device == "mps": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
) | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""يوجد أدناه تعليمات تصف مهمة ، إلى جانب مدخل يوفر المزيد من السياق. اكتب ردًا يكمل الطلب بشكل مناسب. | |
### تعليمات: | |
{instruction} | |
### مدخل: | |
{input} | |
### مخرج:""" | |
else: | |
return f"""يوجد أدناه إرشادات تصف مهمة. يُرجى كتابة رد يكمل الطلب بشكل مناسب. | |
### تعليمات: | |
{instruction} | |
### انتاج:""" | |
if device != "cpu": | |
model.half() | |
model.eval() | |
if torch.__version__ >= "2": | |
model = torch.compile(model) | |
def evaluate( | |
instruction, | |
input=None, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40, | |
num_beams=4, | |
max_new_tokens=128, | |
**kwargs, | |
): | |
prompt = generate_prompt(instruction, input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
**kwargs, | |
) | |
with torch.no_grad(): | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
s = generation_output.sequences[0] | |
output = tokenizer.decode(s) | |
return output.split("### Response:")[1].strip() | |
g = gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, label="Instruction", placeholder="Tell me about alpacas." | |
), | |
gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), | |
gr.components.Slider( | |
minimum=1, maximum=512, step=1, value=128, label="Max tokens" | |
), | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=5, | |
label="Output", | |
) | |
], | |
title="🦙🌲 Alpaca-LoRA 4 Arabic", | |
description="هو نموذج LLaMA المكون من 7B تم ضبطه لاتباع التعليمات. يتم تدريبه على [ستانفورد ألباكا] (https://github.com/tatsu-lab/stanford_alpaca) ويستفيد من تنفيذ Huggingface LLaMA. لمزيد من المعلومات ، يرجى زيارة [موقع المشروع] (https://github.com/tloen/alpaca-lora).", | |
) | |
g.queue(concurrency_count=1) | |
g.launch() | |
# Old testing code follows. | |
""" | |
if __name__ == "__main__": | |
# testing code for readme | |
for instruction in [ | |
"Tell me about alpacas.", | |
"Tell me about the president of Mexico in 2019.", | |
"Tell me about the king of France in 2019.", | |
"List all Canadian provinces in alphabetical order.", | |
"Write a Python program that prints the first 10 Fibonacci numbers.", | |
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", | |
"Tell me five words that rhyme with 'shock'.", | |
"Translate the sentence 'I have no mouth but I must scream' into Spanish.", | |
"Count up from 1 to 500.", | |
]: | |
print("Instruction:", instruction) | |
print("Response:", evaluate(instruction)) | |
print() | |
""" |