import gradio as gr from fastai.vision.all import * import gradio as gr import pathlib def is_cat(x): return x[0].isupper() #temp = pathlib.PosixPath #pathlib.PosixPath = pathlib.WindowsPath learn=load_learner('model.pkl') #pathlib.PosixPath=temp categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.components.Image() label = gr.components.Label() examples=['dog.jpg', 'cat.jpg','dunno.jpg'] a='v' interface = gr.Interface(fn=classify_image, inputs=[image], outputs=[label], examples=examples) interface.launch()