foto_filter / app.py
aliicemill's picture
Update app.py
021fc44 verified
import cv2
import numpy as np
import gradio as gr
# Farklı filtre fonksiyonları
def apply_gaussian_blur(frame, blur_level=1):
ksize = (2 * blur_level + 1, 2 * blur_level + 1)
return cv2.GaussianBlur(frame, ksize, 0)
def apply_sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_edge_detection(frame):
return cv2.Canny(frame, 100, 200)
def apply_invert_filter(frame):
return cv2.bitwise_not(frame)
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def adjust_saturation(frame, saturation=1.0):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV).astype("float32")
hsv[..., 1] *= saturation
hsv[..., 1] = np.clip(hsv[..., 1], 0, 255)
return cv2.cvtColor(hsv.astype("uint8"), cv2.COLOR_HSV2BGR)
def adjust_hue(frame, hue_shift=0):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv[..., 0] = (hsv[..., 0].astype(int) + hue_shift) % 180
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def adjust_gamma(frame, gamma=1.0):
inv_gamma = 1.0 / gamma
table = (np.array([((i / 255.0) ** inv_gamma) * 255 for i in range(256)])
.astype("uint8"))
return cv2.LUT(frame, table)
def apply_grayscale_filter(frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
def apply_sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, sepia_filter)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv2.transform(frame, fall_filter)
# Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image=None, alpha=1.0, beta=50, saturation=1.0, hue_shift=0, gamma=1.0, blur_level=1):
if input_image is not None:
frame = input_image
else:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Web kameradan görüntü alınamadı"
# Seçilen filtreyi uygula
if filter_type == "Gaussian Blur":
frame = apply_gaussian_blur(frame, blur_level=blur_level)
elif filter_type == "Keskinleştir":
frame = apply_sharpening_filter(frame)
elif filter_type == "Kenar Algılama":
frame = apply_edge_detection(frame)
elif filter_type == "Ters Çevir":
frame = apply_invert_filter(frame)
elif filter_type == "Gri Tonlama":
frame = apply_grayscale_filter(frame)
elif filter_type == "Sepya":
frame = apply_sepia_filter(frame)
elif filter_type == "Sonbahar":
frame = apply_fall_filter(frame)
# Tüm filtrelerden bağımsız parametreleri uygula
frame = adjust_brightness_contrast(frame, alpha=alpha, beta=beta)
frame = adjust_saturation(frame, saturation=saturation)
frame = adjust_hue(frame, hue_shift=hue_shift)
frame = adjust_gamma(frame, gamma=gamma)
return frame
# Gradio arayüzü
with gr.Blocks() as demo:
gr.Markdown("# Web Kameradan Canlı Filtreleme")
# Filtre seçenekleri
filter_type = gr.Dropdown(
label="Filtre Seçin",
choices=["Gaussian Blur", "Keskinleştir", "Kenar Algılama", "Ters Çevir", "Parlaklık/Kontrast", "Doygunluk", "Renk Tonu", "Gama", "Gri Tonlama", "Sepya", "Sonbahar"],
value="Gaussian Blur"
)
# Ayar kaydırıcıları
alpha_slider = gr.Slider(0.5, 3.0, value=1.0, label="Parlaklık")
beta_slider = gr.Slider(-100, 100, value=50, label="Kontrast")
saturation_slider = gr.Slider(0.0, 3.0, value=1.0, label="Doygunluk")
hue_slider = gr.Slider(-90, 90, value=0, label="Renk Tonu Değişimi")
gamma_slider = gr.Slider(0.1, 3.0, value=1.0, label="Gama")
blur_slider = gr.Slider(1, 10, value=1, label="Bulanıklık Seviyesi")
# Görüntü yükleme alanı
input_image = gr.Image(label="Resim Yükle", type="numpy")
# Çıktı için görüntü
output_image = gr.Image(label="Filtre Uygulandı")
# Filtre uygula butonu
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonu
apply_button.click(
fn=apply_filter,
inputs=[filter_type, input_image, alpha_slider, beta_slider, saturation_slider, hue_slider, gamma_slider, blur_slider],
outputs=output_image
)
# Gradio arayüzünü başlat
demo.launch()