nllb-200-kbd / app.py
alimboff's picture
Upload app.py
8d4dfa0 verified
raw
history blame
3.48 kB
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
model = AutoModelForSeq2SeqLM.from_pretrained('alimboff/nllb-200-kbd')#.cpu()
tokenizer = NllbTokenizer.from_pretrained('alimboff/nllb-200-kbd')
def fix_tokenizer(tokenizer, new_lang='kbd_Cyrl'):
"""
Add a new language token to the tokenizer vocabulary
(this should be done each time after its initialization)
"""
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
fix_tokenizer(tokenizer)
language_codes = {
"Кабардино-Черкесский": "kbd_Cyrl",
"Русский": "rus_Cyrl"
}
def translate(
text, input_language, output_language,
a=32, b=3, max_input_length=1024, num_beams=8, **kwargs
):
src_lang = language_codes[input_language]
tgt_lang = language_codes[output_language]
"""Turn a text or a list of texts into a list of translations"""
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
inputs = tokenizer(
text, return_tensors='pt', padding=True, truncation=True,
max_length=max_input_length
)
model.eval() # turn off training mode
result = model.generate(
**inputs.to(model.device),
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
num_beams=num_beams, **kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)[0] #без [0]
with gr.Blocks() as demo:
gr.Markdown("### Переводчик через ИИ")
with gr.Row():
input_language = gr.Radio(choices=["Кабардино-Черкесский", "Русский"], label="Выберите язык исходного текста", value="Кабардино-Черкесский")
output_language = gr.Radio(choices=["Кабардино-Черкесский", "Русский"], label="Выберите язык для перевода", value="Русский")
with gr.Row():
text_input = gr.Textbox(label="Введите текст для перевода")
text_output = gr.Textbox(label="Перевод", interactive=False)
with gr.Row():
translate_button = gr.Button("Перевести")
translate_button.click(
fn=translate,
inputs=[text_input, input_language, output_language],
outputs=text_output
)
demo.launch()
# # Example usage:
# # Ӏ
# t = 'пэшым лӀы зыбжанэ щӀэсщ'
# kbdru = translate(t, 'kbd_Cyrl', 'rus_Cyrl')
# rukbd = translate(kbdru, 'rus_Cyrl', 'kbd_Cyrl')
# print(kbdru)
# print(rukbd)