File size: 10,448 Bytes
dc3d3fa
 
 
 
 
 
4cd8ad5
dc3d3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f92ab61
 
 
 
 
 
dc3d3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af0501
dc3d3fa
 
 
 
 
 
8af0501
dc3d3fa
 
 
 
 
bb97c07
dc3d3fa
bb97c07
dc3d3fa
 
 
 
bb97c07
 
 
 
 
 
 
 
 
 
dc3d3fa
bb97c07
 
 
 
 
 
 
dc3d3fa
bb97c07
 
8af0501
bb97c07
 
dc3d3fa
bb97c07
dc3d3fa
 
 
bb97c07
dc3d3fa
bb97c07
 
dc3d3fa
bb97c07
 
 
 
dc3d3fa
bb97c07
 
 
 
dc3d3fa
bb97c07
 
8af0501
bb97c07
dc3d3fa
bb97c07
dc3d3fa
8af0501
dc3d3fa
bb97c07
dc3d3fa
 
bb97c07
 
dc3d3fa
 
 
 
 
 
 
 
 
 
 
 
 
4cd8ad5
 
 
 
f92ab61
4cd8ad5
f92ab61
 
 
 
 
 
 
 
4cd8ad5
5ef1414
 
4cd8ad5
 
 
 
 
f92ab61
4cd8ad5
04d56f2
f92ab61
8af0501
f92ab61
 
 
 
dc3d3fa
 
f92ab61
8af0501
f92ab61
dc3d3fa
 
 
f92ab61
bb97c07
dc3d3fa
f92ab61
 
 
 
 
 
8af0501
f92ab61
 
8af0501
bb97c07
 
4cd8ad5
bb97c07
f92ab61
8af0501
dc3d3fa
 
 
 
 
 
f92ab61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import json
import torch
import logging
import tempfile
import gradio as gr
from gradio.themes import Soft
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel

# Global logging setup
def setup_logging(output_file="app.log"):
    log_filename = os.path.splitext(output_file)[0] + ".log"
    logging.getLogger().handlers.clear()
    file_handler = logging.FileHandler(log_filename)
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))

    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.INFO)
    stream_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))

    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    logger.addHandler(file_handler)
    logger.addHandler(stream_handler)

# Load model and tokenizer
def load_model_and_tokenizer(model_name):
    logging.info(f"Loading model and tokenizer: {model_name}")
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = GPT2LMHeadModel.from_pretrained(model_name)
        if torch.cuda.is_available():
            logging.info("Moving model to CUDA device.")
            model = model.to("cuda")
        return model, tokenizer
    except Exception as e:
        logging.error(f"Error loading model and tokenizer: {e}")
        raise RuntimeError(f"Failed to load model and tokenizer: {e}")

# Load the dataset
def load_uniprot_dataset(dataset_name, dataset_key):
    try:
        dataset = load_dataset(dataset_name, dataset_key)
        uniprot_to_sequence = {row["UniProt_id"]: row["Sequence"] for row in dataset["uniprot_seq"]}
        logging.info("Dataset loaded and processed successfully.")
        return uniprot_to_sequence
    except Exception as e:
        logging.error(f"Error loading dataset: {e}")
        raise RuntimeError(f"Failed to load dataset: {e}")

def save_smiles_to_file(results):
    file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
    with open(file_path, "w") as f:
        json.dump(results, f, indent=4)
    return file_path

# SMILES Generator
class SMILESGenerator:
    def __init__(self, model, tokenizer, uniprot_to_sequence):
        self.model = model
        self.tokenizer = tokenizer
        self.uniprot_to_sequence = uniprot_to_sequence
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(self.device)
        self.generation_kwargs = {
            "do_sample": True,
            "top_k": 9,
            "max_length": 1024,
            "top_p": 0.9,
            "num_return_sequences": 10,
            "bos_token_id": tokenizer.bos_token_id,
            "eos_token_id": tokenizer.eos_token_id,
            "pad_token_id": tokenizer.pad_token_id
        }

    def generate_smiles(self, sequence, num_generated, progress_callback=None):
        generated_smiles_set = set()
        prompt = f"<|startoftext|><P>{sequence}<L>"
        encoded_prompt = self.tokenizer(prompt, return_tensors="pt")["input_ids"].to(self.device)

        logging.info(f"Generating SMILES for sequence: {sequence[:10]}...")
        retries = 0
        while len(generated_smiles_set) < num_generated:
            if retries >= 30:
                logging.warning("Max retries reached. Returning what has been generated so far.")
                break

            sample_outputs = self.model.generate(encoded_prompt, **self.generation_kwargs)
            for i, sample_output in enumerate(sample_outputs):
                output_decode = self.tokenizer.decode(sample_output, skip_special_tokens=False)
                try:
                    generated_smiles = output_decode.split("<L>")[1].split("<|endoftext|>")[0]
                    if generated_smiles not in generated_smiles_set:
                        generated_smiles_set.add(generated_smiles)
                except (IndexError, AttributeError) as e:
                    logging.warning(f"Failed to parse small molecule due to error: {str(e)}. Skipping.")
            
            if progress_callback:
                progress_callback((retries + 1) / 30)

            retries += 1

        logging.info(f"Small molecules generation completed. Generated {len(generated_smiles_set)} Small molecules.")
        return list(generated_smiles_set)

# Gradio interface
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
    results = {}
    uniprot_counter = 0  # Counter for sequences without UniProt IDs

    # Process sequence inputs and include UniProt ID if found
    if sequence_input:
        sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
        for seq in sequences:
            try:
                # Find the corresponding UniProt ID for the sequence
                uniprot_id_for_seq = [uid for uid, s in uniprot_to_sequence.items() if s == seq]
                if uniprot_id_for_seq:
                    uniprot_id_for_seq = uniprot_id_for_seq[0]
                else:
                    # Assign a number as the key for sequences without UniProt IDs
                    uniprot_id_for_seq = str(uniprot_counter)
                    uniprot_counter += 1
                
                # Generate SMILES for the sequence
                smiles = generator.generate_smiles(seq, num_generated)
                
                # UniProt ID or the numeric key as the key
                results[uniprot_id_for_seq] = {
                    "sequence": seq,
                    "smiles": smiles
                }

            except Exception as e:
                results[str(uniprot_counter)] = {
                    "sequence": seq,
                    "error": f"Error generating small molecules: {str(e)}"
                }
                uniprot_counter += 1

    # Process UniProt ID inputs and include sequence if found
    if uniprot_id:
        uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
        for uid in uniprot_ids:
            sequence = uniprot_to_sequence.get(uid, "N/A")
            try:
                # Generate SMILES for the sequence found
                if sequence != "N/A":
                    smiles = generator.generate_smiles(sequence, num_generated)
                    results[uid] = {
                        "sequence": sequence,
                        "smiles": smiles
                    }
                else:
                    results[uid] = {
                        "sequence": "N/A",
                        "error": f"UniProt ID {uid} not found in the dataset."
                    }
            except Exception as e:
                results[uid] = {
                    "sequence": "N/A",
                    "error": f"Error generating small molecules: {str(e)}"
                }

    # Check if no results were generated
    if not results:
        return {"error": "No small molecules generated. Please try again with different inputs."}

    # Save results to a file
    file_path = save_smiles_to_file(results)

    # Return both results (JSON) and the file path
    return results, file_path

# Main initialization and Gradio setup
if __name__ == "__main__":
    setup_logging()
    model_name = "alimotahharynia/DrugGen"
    dataset_name = "alimotahharynia/approved_drug_target"
    dataset_key = "uniprot_sequence"

    model, tokenizer = load_model_and_tokenizer(model_name)
    uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)

    generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)

    # Apply Gradio theme
    theme = Soft(primary_hue="indigo", secondary_hue="teal")

    css = """
        #app-title {
            font-size: 24px;
            text-align: center;
            margin-bottom: 20px;
        }
        #description {
            font-size: 18px;
            text-align: center;
            margin-bottom: 20px;
        }
        #file-output {
            height: 90px;
        }
        #generate-button {
            height: 40px;
            color: #333333 !important;
        }      
    """

    with gr.Blocks(theme=theme, css=css) as iface:
        gr.Markdown("## DrugGen", elem_id="app-title")
        gr.Markdown(
            "Generate **drug-like small molecules structures** from protein sequences or UniProt IDs. "
            "Input data, specify parameters, and download the results.",
            elem_id="description"
        )

        with gr.Row():
            sequence_input = gr.Textbox(
                label="Protein Sequences",
                placeholder="Enter sequences separated by commas (e.g., MGAASGRRGP..., MGETLGDSPI..., ...)",
                lines=3,
            )
            uniprot_id_input = gr.Textbox(
                label="UniProt IDs",
                placeholder="Enter UniProt IDs separated by commas (e.g., P12821, P37231, ...)",
                lines=3,
            )

        num_generated_slider = gr.Slider(
            minimum=1,
            maximum=100,
            step=1,
            value=10,
            label="Number of Unique Small Molecules to Generate",
        )

        output = gr.JSON(label="Generated Small Molecules")
        file_output = gr.File(
        label="Download Results as JSON",
        elem_id=["file-output"]
)

        generate_button = gr.Button("Generate Small Molecule", elem_id="generate-button")
        generate_button.click(
            generate_smiles_gradio,
            inputs=[sequence_input, uniprot_id_input, num_generated_slider],
            outputs=[output, file_output]
        )

        gr.Markdown("""
        ### How to Cite:
        If you use this tool in your research, please cite the following work:
        
        ```bibtex
        @misc{sheikholeslami2024druggenadvancingdrugdiscovery,
            title={DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback}, 
            author={Mahsa Sheikholeslami and Navid Mazrouei and Yousof Gheisari and Afshin Fasihi and Matin Irajpour and Ali Motahharynia},
            year={2024},
            eprint={2411.14157},
            archivePrefix={arXiv},
            primaryClass={q-bio.QM},
            url={https://arxiv.org/abs/2411.14157}, 
        }
        ```

        This will help us maintain the tool and support future development!
        """)

        iface.launch(allowed_paths=["/tmp"])