Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,22 @@
|
|
1 |
import torch
|
2 |
from transformers import BertForSequenceClassification
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load your BERT model
|
|
|
5 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
7 |
model.eval() # Set the model to evaluation mode
|
8 |
-
|
9 |
-
from transformers import BertTokenizer
|
10 |
|
11 |
# Load the tokenizer
|
12 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
@@ -21,9 +31,6 @@ def predict(text):
|
|
21 |
|
22 |
# Set up the Gradio interface
|
23 |
interface = gr.Interface(fn=predict, inputs="text", outputs="label", title="BERT Text Classification")
|
24 |
-
import torch
|
25 |
-
from transformers import BertForSequenceClassification, BertTokenizer
|
26 |
-
import gradio as gr
|
27 |
|
28 |
# Load model and tokenizer
|
29 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
|
|
1 |
import torch
|
2 |
from transformers import BertForSequenceClassification
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import BertTokenizer
|
5 |
+
import torch
|
6 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
7 |
+
import gradio as gr
|
8 |
|
9 |
# Load your BERT model
|
10 |
+
# Load the model architecture
|
11 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
12 |
+
|
13 |
+
# Load the state dict without weights_only
|
14 |
+
try:
|
15 |
+
model.load_state_dict(torch.load('bert_model_complete.pth', map_location=torch.device('cpu')), strict=False)
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error loading state dict: {e}")
|
18 |
model.eval() # Set the model to evaluation mode
|
19 |
+
|
|
|
20 |
|
21 |
# Load the tokenizer
|
22 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
31 |
|
32 |
# Set up the Gradio interface
|
33 |
interface = gr.Interface(fn=predict, inputs="text", outputs="label", title="BERT Text Classification")
|
|
|
|
|
|
|
34 |
|
35 |
# Load model and tokenizer
|
36 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|