small100 / app.py
alirezamsh's picture
Update app.py
be35656
raw
history blame
2.71 kB
import gradio as gr
import os
os.system("pip install transformers sentencepiece torch")
from transformers import M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer
langs = """Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk),
Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn),
Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)"""
lang_list = [lang.strip() for lang in langs.split(',')]
model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100")
tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100")
def small100_tr(text, lang):
tokenizer.tgt_lang = lang
encoded_text = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_text)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
examples = [["French (fr)", "μ—„λ§ˆνŒλ‹€λŠ” μƒˆλΌκ°€ μžˆλ„€."]]
demo = gr.Interface(fn=small100_tr, inputs=["text", "text"], outputs="text")
demo.launch()
output_text = gr.outputs.Textbox()
gr.Interface(small100_tr, inputs=[gr.inputs.Dropdown(lang_list, label=" Target Language"), 'text'], outputs=output_text, title="SMaLL100: Translate Between 100 languages much faster",
description="Demo page for SMaLL100 model",
examples=examples
).launch()