felixrosberg commited on
Commit
81695aa
Β·
1 Parent(s): de22594

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -14
app.py CHANGED
@@ -96,22 +96,23 @@ def run_inference(target, source, slider, adv_slider, settings):
96
 
97
  # align the detected face
98
  M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
99
- im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0)
100
 
101
  if "adversarial defense" in settings:
102
  eps = adv_slider / 200
 
103
  with tf.GradientTape() as tape:
104
- tape.watch(im_aligned)
105
 
106
- X_z = ArcFaceE(tf.image.resize((im_aligned + 1) / 2, [112, 112]))
107
- output = R([im_aligned, X_z])
108
 
109
- loss = tf.reduce_mean(tf.abs(target - output))
110
 
111
- gradient = tf.sign(tape.gradient(loss, im_aligned))
112
 
113
- adv_x = im_aligned + eps * gradient
114
- im_aligned = tf.clip_by_value(adv_x, -1, 1)
115
 
116
  if "anonymize" in settings and "reconstruction attack" not in settings:
117
  """source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
@@ -123,19 +124,19 @@ def run_inference(target, source, slider, adv_slider, settings):
123
 
124
  slider_weight = slider / 100
125
 
126
- target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
127
  source_z = IDP.predict(target_z)
128
 
129
  source_z = slider_weight * source_z + (1 - slider_weight) * target_z
130
 
131
  if "reconstruction attack" in settings:
132
- source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
133
 
134
  # face swap
135
  if "reconstruction attack" not in settings:
136
- changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
137
  source_z])
138
- changed_face = (changed_face_cage[0] + 1) / 2
139
 
140
  # get inverse transformation landmarks
141
  transformed_lmk = transform_landmark_points(M, lm_align)
@@ -149,9 +150,9 @@ def run_inference(target, source, slider, adv_slider, settings):
149
  blend_mask = np.expand_dims(blend_mask, axis=-1)
150
  total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
151
  else:
152
- changed_face_cage = R.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
153
  source_z])
154
- changed_face = (changed_face_cage[0] + 1) / 2
155
 
156
  # get inverse transformation landmarks
157
  transformed_lmk = transform_landmark_points(M, lm_align)
 
96
 
97
  # align the detected face
98
  M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
99
+ im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5
100
 
101
  if "adversarial defense" in settings:
102
  eps = adv_slider / 200
103
+ X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
104
  with tf.GradientTape() as tape:
105
+ tape.watch(X)
106
 
107
+ X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
108
+ output = R([X, X_z])
109
 
110
+ loss = tf.reduce_mean(tf.abs(0 - output))
111
 
112
+ gradient = tf.sign(tape.gradient(loss, X))
113
 
114
+ adv_x = X + eps * gradient
115
+ im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
116
 
117
  if "anonymize" in settings and "reconstruction attack" not in settings:
118
  """source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
 
124
 
125
  slider_weight = slider / 100
126
 
127
+ target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
128
  source_z = IDP.predict(target_z)
129
 
130
  source_z = slider_weight * source_z + (1 - slider_weight) * target_z
131
 
132
  if "reconstruction attack" in settings:
133
+ source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
134
 
135
  # face swap
136
  if "reconstruction attack" not in settings:
137
+ changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0),
138
  source_z])
139
+ changed_face = changed_face_cage[0] * 0.5 + 0.5
140
 
141
  # get inverse transformation landmarks
142
  transformed_lmk = transform_landmark_points(M, lm_align)
 
150
  blend_mask = np.expand_dims(blend_mask, axis=-1)
151
  total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
152
  else:
153
+ changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0),
154
  source_z])
155
+ changed_face = changed_face_cage[0] * 0.5 + 0.5
156
 
157
  # get inverse transformation landmarks
158
  transformed_lmk = transform_landmark_points(M, lm_align)