File size: 17,231 Bytes
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e7382
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd336b
911803a
5dd336b
 
911803a
 
 
 
 
 
 
 
 
 
 
 
 
67e7382
911803a
67e7382
911803a
67e7382
911803a
67e7382
911803a
67e7382
911803a
67e7382
911803a
67e7382
911803a
 
 
07111e1
 
911803a
 
 
 
 
 
 
 
 
 
 
 
07111e1
911803a
 
 
 
 
 
 
07111e1
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07111e1
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07111e1
911803a
07111e1
67e7382
 
 
 
911803a
 
07111e1
911803a
 
07111e1
 
 
911803a
07111e1
 
 
911803a
07111e1
911803a
 
 
 
 
 
 
 
 
 
 
 
 
07111e1
911803a
07111e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911803a
 
 
07111e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911803a
07111e1
 
 
 
 
 
 
 
 
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07111e1
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07111e1
 
911803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea4187
 
911803a
 
 
 
 
5dd336b
911803a
07111e1
911803a
 
 
 
 
 
 
5dd336b
911803a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# -*- coding: utf-8 -*-
"""Untitled1.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1J4fCr7TGzdFvkCeikMAQ5af5ml2Q83W0
"""

import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
import os, glob, fitz
import cv2
import os
import PIL
import torch
import pandas as pd
import numpy as np
import pandas as pd
import gradio as gr
from tqdm import tqdm
from PIL import Image as im
from scipy import ndimage
from difflib import SequenceMatcher
from itertools import groupby
from datasets import load_metric
from datasets import load_dataset
from datasets.features import ClassLabel
from transformers import AutoProcessor
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForTokenClassification
from transformers.data.data_collator import default_data_collator
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from transformers import LayoutLMv3ForTokenClassification,LayoutLMv3FeatureExtractor

# define id2label
id2label = {0: 'song name', 1: 'artist', 2: 'year', 3: 'album', 4: 'genres', 5: 'song writer', 6: 'lyrics', 7: 'others'}
custom_config = r'--oem 3 --psm 6'
# lang='eng+deu+ita+chi_sim'
lang='spa'

label_ints = np.random.randint(0,len(PIL.ImageColor.colormap.items()),42)
label_color_pil = [k for k,_ in PIL.ImageColor.colormap.items()]
label_color = [label_color_pil[i] for i in label_ints]
label2color = {}
for k,v in id2label.items():
  if v[:2] == '':
    label2color['o']=label_color[k]
  else:
    label2color[v[2:]]=label_color[k]


processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True,lang=lang)
model = AutoModelForTokenClassification.from_pretrained("alitavanaali/music_layoutlmv3_model")
feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=True,lang=lang)


def unnormalize_box(bbox, width, height):
     #print('shape is: ', np.asarray(bbox).shape, ' and box has values: ', bbox)
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]

def iob_to_label(label):
  if label == 0:
    return 'song name'
  if label == 1:
    return 'artist'
  if label == 2:
    return 'year'
  if label == 3:
    return 'album'
  if label == 4:
    return 'genres'
  if label == 5:
    return 'song writer'
  if label == 6:
    return 'lyrics'
  if label == 7:
    return 'others'



# this method will detect if there is any intersect between two boxes or not
def intersect(w, z):
    x1 = max(w[0], z[0]) #190  | 881  |  10
    y1 = max(w[1], z[1]) #90   | 49   | 273
    x2 = min(w[2], z[2]) #406  | 406  | 1310
    y2 = min(w[3], z[3]) #149  | 703  | 149
    if (x1 > x2 or y1 > y2):
      return 0
    else:
      # because sometimes in annotating, it is possible to overlap rows or columns by mistake 
      # for very small pixels, we check a threshold to delete them
      area = (x2-x1) * (y2-y1)
      if (area > 0): 
        return [int(x1), int(y1), int(x2), int(y2)]
      else:
        return 0

def process_image(image):
    custom_config = r'--oem 3 --psm 6'
    # lang='eng+deu+ita+chi_sim'
    lang='eng'
    width, height = image.size
    encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True)
    words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes

    custom_config = r'--oem 3 --psm 6'
    # encode
    inference_image = [image.convert("RGB")]
    encoding = processor(inference_image , truncation=True, return_offsets_mapping=True, return_tensors="pt", 
                     padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True)
    offset_mapping = encoding.pop('offset_mapping')
    overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')

    # change the shape of pixel values
    x = []
    for i in range(0, len(encoding['pixel_values'])):
      x.append(encoding['pixel_values'][i])
    x = torch.stack(x)
    encoding['pixel_values'] = x

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    preds = []
    l_words = []
    bboxes = []
    token_section_num = [] # related to more than 512 tokens

    if (len(token_boxes) == 512):
      predictions = [predictions]
      token_boxes = [token_boxes]

    for i in range(0, len(token_boxes)):
      for j in range(0, len(token_boxes[i])):
        #print(np.asarray(token_boxes[i][j]).shape)
        unnormal_box = unnormalize_box(token_boxes[i][j], width, height)
        #print('prediction: {} - box: {} - word:{}'.format(predictions[i][j], unnormal_box, processor.tokenizer.decode(encoding["input_ids"][i][j])))
        if (np.asarray(token_boxes[i][j]).shape != (4,)):
          continue
        elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0):
          #print('zero found!')
          continue
        # if bbox is available in the list, just we need to update text
        elif (unnormal_box not in bboxes): 
          preds.append(predictions[i][j])
          l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j]))
          bboxes.append(unnormal_box)
          token_section_num.append(i)
        else:
          # we have to update the word
          _index = bboxes.index(unnormal_box)
          if (token_section_num[_index] == i): 
            # check if they're in a same section or not (documents with more than 512 tokens will divide to seperate
            # parts, so it's possible to have a word in both of the pages and we have to control that repetetive words
            # HERE: because they're in a same section, so we can merge them safely
            l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j])
          else:
            continue
    return bboxes, preds, l_words, image



def visualize_image(final_bbox, final_preds, l_words, image):

      draw = ImageDraw.Draw(image)
      font = ImageFont.load_default()
      #{0: 'document number', 1: 'elemento pn', 2: 'nombre del responsabile', 3: 'fecha', 4: 'internal reference', 5: 'others'}

      #id2label = {0: 'song name', 1: 'artist', 2: 'year', 3: 'album', 4: 'genres', 5: 'song writer', 6: 'lyrics', 7: 'others'}
      label2color = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue', 'lyrics':'purple', 'others': 'white'}
      l2l = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue','lyrics':'purple', 'others':'white'}
      f_labels = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue','lyrics':'purple', 'others':'white'}

      json_df = []

      # draw bboxes on image
      for ix, (prediction, box) in enumerate(zip(final_preds, final_bbox)):
        predicted_label = iob_to_label(prediction).lower()
        if (predicted_label != 'others'): 
          draw.rectangle(box, outline=label2color[predicted_label])
          draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)

          json_dict = {}
          json_dict['TEXT'] = l_words[ix]
          json_dict['LABEL'] = f_labels[predicted_label]

          json_df.append(json_dict)
      return image, json_df


def mergeCloseBoxes(pr, bb, wr, threshold):
  idx = 0
  final_bbox =[]
  final_preds =[]
  final_words=[]
  
  for box, pred, word in zip(bb, pr, wr):
    if (pred=='others'):
      continue
    else:
      flag = False
      for b, p, w in zip(bb, pr, wr):
              if (p == 'others'):
                #print('others')
                #print('-------')
                continue
              elif (box==b): # we shouldn't check each item with itself
                #print('itself')
                #print('--------')
                continue
              else:
                XMIN, YMIN, XMAX, YMAX = box
                xmin, ymin, xmax, ymax = b
                #print('word: {} , w:{}'.format(word, w))
                intsc = intersect([XMIN, YMIN, XMAX+threshold, YMAX], [xmin-threshold, ymin, xmax, ymax])
                if (intsc != 0 and pred==p):
                        flag = True
                        #print('there is intersect')
                        # if(abs(XMAX - xmin) < treshold and abs(YMIN - ymin) < 10):
                        # we have to check if there is any intersection between box and all the values in final_bbox list
                        # because if we have updated it before, now we have to update in final_bbox
                        #print(final_bbox)
                        print(*final_bbox, sep=",")
                        merged_box = [
                            min(XMIN, xmin),
                            min(YMIN, ymin),
                            max(XMAX, xmax),
                            max(YMAX, ymax)
                        ]
                        merged_words = word + ' ' + w
                        # add to final_bbox
                        wasAvailable = False
                        for id, fbox in enumerate(final_bbox):
                            if (intersect(box, fbox) != 0 and pred==final_preds[id]):
                                #print('added before!')
                                # box is inside another processed box, so we have to update it
                                wasAvailable = True
                                merged_box = [
                                    min(fbox[0], min(XMIN, xmin)),
                                    min(fbox[1], min(YMIN, ymin)), 
                                    max(fbox[2], max(XMAX, xmax)), 
                                    max(fbox[3], max(YMAX, ymax))
                                ]
                                final_bbox[id] = merged_box
                                final_words[id] = final_words[id] + ' ' + w
                                break
                        
                        if (not wasAvailable):
                            # there was no intersect, bbox is not added before
                            #print('not added before, so we add merged box!')
                            final_bbox.append(merged_box)
                            final_preds.append(pred)
                            final_words.append(merged_words)
                '''else: 
                        print()
                        final_bbox.append(box)
                        final_preds.append(pred)
                        final_words.append(word)'''
      if (flag == False):
          #print('flag is false, word: {} added'.format(word))
          # there is no intersect between word and the others
          # we will check for last time if box is inside the others, because if the word is last word (like Juan + Mulian + Alexander) (Alexander)
          # it is added before but it has not intersection with others, so we will check to prevent
          for id, fbox in enumerate(final_bbox):
            if (intersect(box, fbox) != 0 and pred==final_preds[id]):
              flag = True

          if (not flag):
            final_bbox.append(box)
            final_preds.append(pred)
            final_words.append(word)

  return final_bbox, final_preds, final_words

def createDataframe(preds, words):
  df = pd.DataFrame(columns = ['song name', 'artist', 'year', 'album', 'genres', 'song writer', 'lyrics', 'others'])
  if (len(preds) > 0):
      flag_label = preds[0]
      #print(preds)
      #print(words)
      #print('@@@@@')
      #print(flag_label)
      row_number = -1
      for i in range(len(preds)):
          #print('i is: {}'.format(i))
          if (preds[i] == flag_label):
              row_number = row_number + 1
              df.at[row_number, preds[i]] = words[i]
              #print('row number is: {}'.format(row_number))
              continue

          else:
            #print('row_number {} is <= of df.shape {}'.format(row_number, df.shape[0]))
            #print(pd.isna(df[preds[i]].iloc[row_number]))
            #print(pd.isna(df[preds[i]].iloc[row_number]))
            if(pd.isna(df[preds[i]].iloc[row_number])):
              df.at[row_number, preds[i]] = words[i]
            else:
              row_number = row_number + 1
              df.at[row_number, preds[i]] = words[i]
  
  return df

def isInside(w, z):
    # return True if w is inside z, if z is inside w return false
    if(w[0] >= z[0] and w[1] >= z[1] and w[2] <= z[2] and w[3] <= z[3]):
      return True
    return False

def removeSimilarItems(final_bbox, final_preds, final_words):
  _bb =[] 
  _pp=[] 
  _ww=[]
  for i in range(len(final_bbox)):
    _bb.append(final_bbox[i])
    _pp.append(final_preds[i])
    _ww.append(final_words[i])
    for j in range(len(final_bbox)):
        if (final_bbox[i] == final_bbox[j]):
          continue
        elif (isInside(final_bbox[i], final_bbox[j]) and final_preds[i]==final_preds[j] ):
           # box i is inside box j, so we have to remove it
           #print('box[i]: {} is inside box[j]:{}'.format(final_bbox[i], final_bbox[j]))
           _bb = _bb[:-1]
           _pp = _pp[:-1]
           _ww = _ww[:-1]
           continue
  return _bb, _pp, _ww
  
 #[45.604, 2309.811, 66.652, 2391.6839999999997]

def process_form(preds, words, bboxes):
  
  final_bbox, final_preds, final_words = mergeCloseBoxes(preds, bboxes, words, 30)
  _bbox, _preds, _words = removeSimilarItems(final_bbox, final_preds, final_words)
  # convert float list to int
  _bbox = [[int(x) for x in item ] for item in _bbox]
  # creat data object for sorting
  data = []
  for index in range(len(_bbox)):
    data.append((_bbox[index], _preds[index], _words[index]))
  # sorting by the height of the page
  sorted_list = sorted(
      data, 
      key=lambda x: x[0][1]
  )
  _bbox = [item[0] for item in sorted_list]
  _preds = [item[1] for item in sorted_list]
  _words = [item[2] for item in sorted_list]
  return _bbox, _preds, _words

def mergeImageVertical(a):
  list_im = a
  imgs    = [ Image.open(i) for i in list_im ]
  # pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
  min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1]
  imgs_comb = np.hstack([i.resize(min_shape) for i in imgs])
  
  # for a vertical stacking it is simple: use vstack
  imgs_comb = np.vstack([i.resize(min_shape) for i in imgs])
  imgs_comb = Image.fromarray( imgs_comb)
  imgs_comb.save( 'Trifecta_vertical.jpg' )
  return imgs_comb

def completepreprocess(pdffile):
  myDataFrame = pd.DataFrame()
  a=[]
  doc = fitz.open(pdffile)
  for i in range(0,len(doc)):
    page = doc.load_page(i)
    zoom = 2    # zoom factor
    mat = fitz.Matrix(zoom, zoom)
    pix = page.get_pixmap(matrix = mat,dpi = 200)
    t=pix.save("page"+str(i)+".jpg")
    images = Image.open("page"+str(i)+".jpg")
    image = images.convert("RGB")
    bbox, preds, words, image = process_image(image)
    print(preds)
    print(words)
    im, df = visualize_image(bbox, preds, words, image)
    im1 = im.save("page"+str(i)+".jpg")
    a.append("page"+str(i)+".jpg")
    pred_list = []
    for number in preds:
      pred_list.append(iob_to_label(number))
    _bbox, _preds, _words = process_form(pred_list, words, bbox)
    print('page: ' + str(i) + '  ' + str(len(_preds))+ '  ' + str(len(_words)))
    df = createDataframe(_preds, _words)
    myDataFrame=myDataFrame.append(df)

  im2=mergeImageVertical(a)  
  return im2,myDataFrame


title = "Interactive demo: Music Information Extraction model"
description = "Music Information Extraction - We used Microsoft’s LayoutLMv3 trained on Our Music Dataset through csv's to predict the labels.  To use it, simply upload a PDF or use the example PDF below and click ‘Submit’. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select ‘Open image in new tab’.Train =16 ,Test =7"

css = """.output_image, .input_image {height: 600px !important}"""
#examples = [["461BHH69.PDF"],["AP-481-RF.PDF"],["DP-095-ML.PDF"],["DQ-231-LL.PDF"],["FK-941-ET.PDF"], ["FL-078-NH.PDF"]
#              ,["14ZZ69.PDF"],["74BCA69.PDF"],["254BEG69.PDF"],["761BJQ69.PDF"],["AB-486-EH.PDF"],["AZ-211-ZA.PDF"], ["CY-073-YV.PDF"]]
# ["744BJQ69.PDF"], ['tarros_2.jpg'],
examples = [['test1.jpg'], ['doc1.pdf'], ['doc1.2.pdf']]


iface = gr.Interface(fn=completepreprocess,
                     #inputs=gr.inputs.Image(type="pil",optional=True,label="upload file"),
                     inputs=gr.File(label="PDF"),
                     #inputs=gr.inputs.Image(type="pil")
                     outputs=[gr.outputs.Image(type="pil", label="annotated image"),"dataframe"] ,
                     title=title,
                     description=description,
                     examples=examples,
                     css=css,
                     analytics_enabled = True, enable_queue=True)

iface.launch(inline=False , debug=True)