music / app.py
alitavanaali's picture
Update app.py
dd6f9da
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
import os, glob, fitz
import cv2
import os
import PIL
import torch
import pandas as pd
import numpy as np
import pandas as pd
import gradio as gr
from tqdm import tqdm
from PIL import Image as im
from scipy import ndimage
from difflib import SequenceMatcher
from itertools import groupby
from datasets import load_metric
from datasets import load_dataset
from datasets.features import ClassLabel
from transformers import AutoProcessor
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForTokenClassification
from transformers.data.data_collator import default_data_collator
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from transformers import LayoutLMv3ForTokenClassification,LayoutLMv3FeatureExtractor
# define id2label
id2label = {0: 'song name', 1: 'artist', 2: 'year', 3: 'album', 4: 'genres', 5: 'song writer', 6: 'lyrics', 7: 'others'}
custom_config = r'--oem 3 --psm 6'
# lang='eng+deu+ita+chi_sim'
lang='spa'
label_ints = np.random.randint(0,len(PIL.ImageColor.colormap.items()),42)
label_color_pil = [k for k,_ in PIL.ImageColor.colormap.items()]
label_color = [label_color_pil[i] for i in label_ints]
label2color = {}
for k,v in id2label.items():
if v[:2] == '':
label2color['o']=label_color[k]
else:
label2color[v[2:]]=label_color[k]
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True,lang=lang)
model = AutoModelForTokenClassification.from_pretrained("alitavanaali/music_layoutlmv3_model")
feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=True,lang=lang)
def unnormalize_box(bbox, width, height):
#print('shape is: ', np.asarray(bbox).shape, ' and box has values: ', bbox)
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
if label == 0:
return 'song name'
if label == 1:
return 'artist'
if label == 2:
return 'year'
if label == 3:
return 'album'
if label == 4:
return 'genres'
if label == 5:
return 'song writer'
if label == 6:
return 'lyrics'
if label == 7:
return 'others'
# this method will detect if there is any intersect between two boxes or not
def intersect(w, z):
x1 = max(w[0], z[0]) #190 | 881 | 10
y1 = max(w[1], z[1]) #90 | 49 | 273
x2 = min(w[2], z[2]) #406 | 406 | 1310
y2 = min(w[3], z[3]) #149 | 703 | 149
if (x1 > x2 or y1 > y2):
return 0
else:
# because sometimes in annotating, it is possible to overlap rows or columns by mistake
# for very small pixels, we check a threshold to delete them
area = (x2-x1) * (y2-y1)
if (area > 0):
return [int(x1), int(y1), int(x2), int(y2)]
else:
return 0
def process_image(image):
custom_config = r'--oem 3 --psm 6'
# lang='eng+deu+ita+chi_sim'
lang='eng'
width, height = image.size
encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True)
words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes
custom_config = r'--oem 3 --psm 6'
# encode
inference_image = [image.convert("RGB")]
encoding = processor(inference_image , truncation=True, return_offsets_mapping=True, return_tensors="pt",
padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True)
offset_mapping = encoding.pop('offset_mapping')
overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')
# change the shape of pixel values
x = []
for i in range(0, len(encoding['pixel_values'])):
x.append(encoding['pixel_values'][i])
x = torch.stack(x)
encoding['pixel_values'] = x
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
preds = []
l_words = []
bboxes = []
token_section_num = [] # related to more than 512 tokens
if (len(token_boxes) == 512):
predictions = [predictions]
token_boxes = [token_boxes]
for i in range(0, len(token_boxes)):
for j in range(0, len(token_boxes[i])):
#print(np.asarray(token_boxes[i][j]).shape)
unnormal_box = unnormalize_box(token_boxes[i][j], width, height)
#print('prediction: {} - box: {} - word:{}'.format(predictions[i][j], unnormal_box, processor.tokenizer.decode(encoding["input_ids"][i][j])))
if (np.asarray(token_boxes[i][j]).shape != (4,)):
continue
elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0):
#print('zero found!')
continue
# if bbox is available in the list, just we need to update text
elif (unnormal_box not in bboxes):
preds.append(predictions[i][j])
l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j]))
bboxes.append(unnormal_box)
token_section_num.append(i)
else:
# we have to update the word
_index = bboxes.index(unnormal_box)
if (token_section_num[_index] == i):
# check if they're in a same section or not (documents with more than 512 tokens will divide to seperate
# parts, so it's possible to have a word in both of the pages and we have to control that repetetive words
# HERE: because they're in a same section, so we can merge them safely
l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j])
else:
continue
return bboxes, preds, l_words, image
def visualize_image(final_bbox, final_preds, l_words, image):
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
#{0: 'document number', 1: 'elemento pn', 2: 'nombre del responsabile', 3: 'fecha', 4: 'internal reference', 5: 'others'}
#id2label = {0: 'song name', 1: 'artist', 2: 'year', 3: 'album', 4: 'genres', 5: 'song writer', 6: 'lyrics', 7: 'others'}
label2color = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue', 'lyrics':'purple', 'others': 'white'}
l2l = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue','lyrics':'purple', 'others':'white'}
f_labels = {'song name':'red', 'artist':'blue', 'year':'black', 'album':'green', 'genres':'brown', 'song writer':'blue','lyrics':'purple', 'others':'white'}
json_df = []
# draw bboxes on image
for ix, (prediction, box) in enumerate(zip(final_preds, final_bbox)):
predicted_label = iob_to_label(prediction).lower()
if (predicted_label != 'others'):
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
json_dict = {}
json_dict['TEXT'] = l_words[ix]
json_dict['LABEL'] = f_labels[predicted_label]
json_df.append(json_dict)
return image, json_df
def mergeCloseBoxes(pr, bb, wr, threshold):
idx = 0
final_bbox =[]
final_preds =[]
final_words=[]
for box, pred, word in zip(bb, pr, wr):
if (pred=='others'):
continue
else:
flag = False
for b, p, w in zip(bb, pr, wr):
if (p == 'others'):
#print('others')
#print('-------')
continue
elif (box==b): # we shouldn't check each item with itself
#print('itself')
#print('--------')
continue
else:
XMIN, YMIN, XMAX, YMAX = box
xmin, ymin, xmax, ymax = b
#print('word: {} , w:{}'.format(word, w))
intsc = intersect([XMIN, YMIN, XMAX+threshold, YMAX], [xmin-threshold, ymin, xmax, ymax])
if (intsc != 0 and pred==p):
flag = True
#print('there is intersect')
# if(abs(XMAX - xmin) < treshold and abs(YMIN - ymin) < 10):
# we have to check if there is any intersection between box and all the values in final_bbox list
# because if we have updated it before, now we have to update in final_bbox
#print(final_bbox)
print(*final_bbox, sep=",")
merged_box = [
min(XMIN, xmin),
min(YMIN, ymin),
max(XMAX, xmax),
max(YMAX, ymax)
]
merged_words = word + ' ' + w
# add to final_bbox
wasAvailable = False
for id, fbox in enumerate(final_bbox):
if (intersect(box, fbox) != 0 and pred==final_preds[id]):
#print('added before!')
# box is inside another processed box, so we have to update it
wasAvailable = True
merged_box = [
min(fbox[0], min(XMIN, xmin)),
min(fbox[1], min(YMIN, ymin)),
max(fbox[2], max(XMAX, xmax)),
max(fbox[3], max(YMAX, ymax))
]
final_bbox[id] = merged_box
final_words[id] = final_words[id] + ' ' + w
break
if (not wasAvailable):
# there was no intersect, bbox is not added before
#print('not added before, so we add merged box!')
final_bbox.append(merged_box)
final_preds.append(pred)
final_words.append(merged_words)
'''else:
print()
final_bbox.append(box)
final_preds.append(pred)
final_words.append(word)'''
if (flag == False):
#print('flag is false, word: {} added'.format(word))
# there is no intersect between word and the others
# we will check for last time if box is inside the others, because if the word is last word (like Juan + Mulian + Alexander) (Alexander)
# it is added before but it has not intersection with others, so we will check to prevent
for id, fbox in enumerate(final_bbox):
if (intersect(box, fbox) != 0 and pred==final_preds[id]):
flag = True
if (not flag):
final_bbox.append(box)
final_preds.append(pred)
final_words.append(word)
return final_bbox, final_preds, final_words
def createDataframe(predictions, words):
result1, result2 = zip(*sorted(zip(predictions, words), key=lambda x: x[0]))
d = {'key':result1,'value':result2}
df = pd.DataFrame(d)
df1 = df[df['key'] != 'lyrics']
df2 = df[df['key'] == 'lyrics']
df2 = df2.groupby(['key'], as_index = False).agg({'value': ' \n '.join})
return df1, df2
def isInside(w, z):
# return True if w is inside z, if z is inside w return false
if(w[0] >= z[0] and w[1] >= z[1] and w[2] <= z[2] and w[3] <= z[3]):
return True
return False
def removeSimilarItems(final_bbox, final_preds, final_words):
_bb =[]
_pp=[]
_ww=[]
for i in range(len(final_bbox)):
_bb.append(final_bbox[i])
_pp.append(final_preds[i])
_ww.append(final_words[i])
for j in range(len(final_bbox)):
if (final_bbox[i] == final_bbox[j]):
continue
elif (isInside(final_bbox[i], final_bbox[j]) and final_preds[i]==final_preds[j] ):
# box i is inside box j, so we have to remove it
#print('box[i]: {} is inside box[j]:{}'.format(final_bbox[i], final_bbox[j]))
_bb = _bb[:-1]
_pp = _pp[:-1]
_ww = _ww[:-1]
continue
return _bb, _pp, _ww
#[45.604, 2309.811, 66.652, 2391.6839999999997]
def process_form(preds, words, bboxes):
final_bbox, final_preds, final_words = mergeCloseBoxes(preds, bboxes, words, 30)
_bbox, _preds, _words = removeSimilarItems(final_bbox, final_preds, final_words)
# convert float list to int
_bbox = [[int(x) for x in item ] for item in _bbox]
# creat data object for sorting
data = []
for index in range(len(_bbox)):
data.append((_bbox[index], _preds[index], _words[index]))
# sorting by the height of the page
sorted_list = sorted(
data,
key=lambda x: x[0][1]
)
_bbox = [item[0] for item in sorted_list]
_preds = [item[1] for item in sorted_list]
_words = [item[2] for item in sorted_list]
return _bbox, _preds, _words
def mergeImageVertical(a):
list_im = a
imgs = [ Image.open(i) for i in list_im ]
# pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1]
imgs_comb = np.hstack([i.resize(min_shape) for i in imgs])
# for a vertical stacking it is simple: use vstack
imgs_comb = np.vstack([i.resize(min_shape) for i in imgs])
imgs_comb = Image.fromarray( imgs_comb)
imgs_comb.save( 'Trifecta_vertical.jpg' )
return imgs_comb
def completepreprocess(pdffile):
dfOne = pd.DataFrame()
dfTwo = pd.DataFrame()
a=[]
doc = fitz.open(pdffile)
for i in range(0,len(doc)):
page = doc.load_page(i)
zoom = 2 # zoom factor
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix = mat,dpi = 200)
t=pix.save("page"+str(i)+".jpg")
images = Image.open("page"+str(i)+".jpg")
image = images.convert("RGB")
bbox, preds, words, image = process_image(image)
print(preds)
print(words)
im, df = visualize_image(bbox, preds, words, image)
im1 = im.save("page"+str(i)+".jpg")
a.append("page"+str(i)+".jpg")
pred_list = []
for number in preds:
pred_list.append(iob_to_label(number))
_bbox, _preds, _words = process_form(pred_list, words, bbox)
print('page: ' + str(i) + ' ' + str(len(_preds))+ ' ' + str(len(_words)))
df1, df2 = createDataframe(_preds, _words)
dfOne=dfOne._append(df1)
dfTwo=dfTwo._append(df2)
im2=mergeImageVertical(a)
return im2,dfOne,dfTwo
title = "Interactive demo: Music Information Extraction model"
description = "Music Information Extraction - We used Microsoft’s LayoutLMv3 trained on Our Music Dataset through csv's to predict the labels. To use it, simply upload a PDF or use the example PDF below and click ‘Submit’. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select ‘Open image in new tab’.Train =24 ,Test =9"
css = """.output_image, .input_image {height: 600px !important}"""
examples = [['b2_ex1.pdf'], ['b2_ex2.pdf'], ['test1.jpg'], ['doc2.pdf'], ['doc1.pdf']]
iface = gr.Interface(fn=completepreprocess,
#inputs=gr.inputs.Image(type="pil",optional=True,label="upload file"),
inputs=gr.File(label="PDF"),
#inputs=gr.inputs.Image(type="pil")
outputs=[gr.outputs.Image(type="pil", label="annotated image"),"dataframe", "dataframe"] ,
title=title,
description=description,
examples=examples,
css=css,
analytics_enabled = True, enable_queue=True)
iface.launch(inline=False , debug=True)