import gradio as gr from transformers import pipeline # Load the Hugging Face model model = pipeline("image-classification", model="alkatraz445/deepfake_detection") # Define the prediction function def classify_image(image): results = model(image) return {result['label']: result['score'] for result in results} # Create the Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), # Accepts images in PIL format outputs=gr.Label(num_top_classes=2), # Displays top two classifications with probabilities title="Deepfake image detector", description="Upload an image to determine whether it's real or deepfake.", ) # Launch the Gradio app interface.launch()