File size: 8,892 Bytes
c4b2b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import argparse
import json
import logging
import os
import random
from itertools import chain
from typing import Set
import numpy as np
import torch
from rationale_benchmark.models.mlp import (AttentiveClassifier,
BahadanauAttention, RNNEncoder,
WordEmbedder)
from rationale_benchmark.models.model_utils import extract_embeddings
from rationale_benchmark.models.pipeline.evidence_classifier import \
train_evidence_classifier
from rationale_benchmark.models.pipeline.evidence_identifier import \
train_evidence_identifier
from rationale_benchmark.models.pipeline.pipeline_utils import decode
from rationale_benchmark.utils import (intern_annotations, intern_documents,
load_datasets, load_documents,
write_jsonl)
logging.basicConfig(
level=logging.DEBUG, format="%(relativeCreated)6d %(threadName)s %(message)s"
)
# let's make this more or less deterministic (not resistant to restarts)
random.seed(12345)
np.random.seed(67890)
torch.manual_seed(10111213)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initialize_models(
params: dict, vocab: Set[str], batch_first: bool, unk_token="UNK"
):
# TODO this is obviously asking for some sort of dependency injection. implement if it saves me time.
if "embedding_file" in params["embeddings"]:
embeddings, word_interner, de_interner = extract_embeddings(
vocab, params["embeddings"]["embedding_file"], unk_token=unk_token
)
if torch.cuda.is_available():
embeddings = embeddings.cuda()
else:
raise ValueError("No 'embedding_file' found in params!")
word_embedder = WordEmbedder(embeddings, params["embeddings"]["dropout"])
query_encoder = RNNEncoder(
word_embedder,
batch_first=batch_first,
condition=False,
attention_mechanism=BahadanauAttention(word_embedder.output_dimension),
)
document_encoder = RNNEncoder(
word_embedder,
batch_first=batch_first,
condition=True,
attention_mechanism=BahadanauAttention(
word_embedder.output_dimension, query_size=query_encoder.output_dimension
),
)
evidence_identifier = AttentiveClassifier(
document_encoder,
query_encoder,
2,
params["evidence_identifier"]["mlp_size"],
params["evidence_identifier"]["dropout"],
)
query_encoder = RNNEncoder(
word_embedder,
batch_first=batch_first,
condition=False,
attention_mechanism=BahadanauAttention(word_embedder.output_dimension),
)
document_encoder = RNNEncoder(
word_embedder,
batch_first=batch_first,
condition=True,
attention_mechanism=BahadanauAttention(
word_embedder.output_dimension, query_size=query_encoder.output_dimension
),
)
evidence_classes = dict(
(y, x) for (x, y) in enumerate(params["evidence_classifier"]["classes"])
)
evidence_classifier = AttentiveClassifier(
document_encoder,
query_encoder,
len(evidence_classes),
params["evidence_classifier"]["mlp_size"],
params["evidence_classifier"]["dropout"],
)
return (
evidence_identifier,
evidence_classifier,
word_interner,
de_interner,
evidence_classes,
)
def main():
parser = argparse.ArgumentParser(
description="""Trains a pipeline model.
Step 1 is evidence identification, that is identify if a given sentence is evidence or not
Step 2 is evidence classification, that is given an evidence sentence, classify the final outcome for the final task (e.g. sentiment or significance).
These models should be separated into two separate steps, but at the moment:
* prep data (load, intern documents, load json)
* convert data for evidence identification - in the case of training data we take all the positives and sample some negatives
* side note: this sampling is *somewhat* configurable and is done on a per-batch/epoch basis in order to gain a broader sampling of negative values.
* train evidence identification
* convert data for evidence classification - take all rationales + decisions and use this as input
* train evidence classification
* decode first the evidence, then run classification for each split
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--data_dir",
dest="data_dir",
required=True,
help="Which directory contains a {train,val,test}.jsonl file?",
)
parser.add_argument(
"--output_dir",
dest="output_dir",
required=True,
help="Where shall we write intermediate models + final data to?",
)
parser.add_argument(
"--model_params",
dest="model_params",
required=True,
help="JSoN file for loading arbitrary model parameters (e.g. optimizers, pre-saved files, etc.",
)
args = parser.parse_args()
BATCH_FIRST = True
with open(args.model_params, "r") as fp:
logging.debug(f"Loading model parameters from {args.model_params}")
model_params = json.load(fp)
train, val, test = load_datasets(args.data_dir)
docids = set(
e.docid
for e in chain.from_iterable(
chain.from_iterable(map(lambda ann: ann.evidences, chain(train, val, test)))
)
)
documents = load_documents(args.data_dir, docids)
document_vocab = set(chain.from_iterable(chain.from_iterable(documents.values())))
annotation_vocab = set(
chain.from_iterable(e.query.split() for e in chain(train, val, test))
)
logging.debug(
f"Loaded {len(documents)} documents with {len(document_vocab)} unique words"
)
# this ignores the case where annotations don't align perfectly with token boundaries, but this isn't that important
vocab = document_vocab | annotation_vocab
unk_token = "UNK"
(
evidence_identifier,
evidence_classifier,
word_interner,
de_interner,
evidence_classes,
) = initialize_models(
model_params, vocab, batch_first=BATCH_FIRST, unk_token=unk_token
)
logging.debug(
f"Including annotations, we have {len(vocab)} total words in the data, with embeddings for {len(word_interner)}"
)
interned_documents = intern_documents(documents, word_interner, unk_token)
interned_train = intern_annotations(train, word_interner, unk_token)
interned_val = intern_annotations(val, word_interner, unk_token)
interned_test = intern_annotations(test, word_interner, unk_token)
assert BATCH_FIRST # for correctness of the split dimension for DataParallel
evidence_identifier, evidence_ident_results = train_evidence_identifier(
evidence_identifier.cuda(),
args.output_dir,
interned_train,
interned_val,
interned_documents,
model_params,
tensorize_model_inputs=True,
)
evidence_classifier, evidence_class_results = train_evidence_classifier(
evidence_classifier.cuda(),
args.output_dir,
interned_train,
interned_val,
interned_documents,
model_params,
class_interner=evidence_classes,
tensorize_model_inputs=True,
)
pipeline_batch_size = min(
[
model_params["evidence_classifier"]["batch_size"],
model_params["evidence_identifier"]["batch_size"],
]
)
pipeline_results, train_decoded, val_decoded, test_decoded = decode(
evidence_identifier,
evidence_classifier,
interned_train,
interned_val,
interned_test,
interned_documents,
evidence_classes,
pipeline_batch_size,
tensorize_model_inputs=True,
)
write_jsonl(train_decoded, os.path.join(args.output_dir, "train_decoded.jsonl"))
write_jsonl(val_decoded, os.path.join(args.output_dir, "val_decoded.jsonl"))
write_jsonl(test_decoded, os.path.join(args.output_dir, "test_decoded.jsonl"))
with open(
os.path.join(args.output_dir, "identifier_results.json"), "w"
) as ident_output, open(
os.path.join(args.output_dir, "classifier_results.json"), "w"
) as class_output:
ident_output.write(json.dumps(evidence_ident_results))
class_output.write(json.dumps(evidence_class_results))
for k, v in pipeline_results.items():
if type(v) is dict:
for k1, v1 in v.items():
logging.info(f"Pipeline results for {k}, {k1}={v1}")
else:
logging.info(f"Pipeline results {k}\t={v}")
if __name__ == "__main__":
main()
|