import argparse import glob import numpy as np import torch # compute rollout between attention layers def compute_rollout_attention(all_layer_matrices, start_layer=0): # adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow num_tokens = all_layer_matrices[0].shape[1] batch_size = all_layer_matrices[0].shape[0] eye = ( torch.eye(num_tokens) .expand(batch_size, num_tokens, num_tokens) .to(all_layer_matrices[0].device) ) all_layer_matrices = [ all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) ] matrices_aug = [ all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) for i in range(len(all_layer_matrices)) ] joint_attention = matrices_aug[start_layer] for i in range(start_layer + 1, len(matrices_aug)): joint_attention = matrices_aug[i].bmm(joint_attention) return joint_attention class Generator: def __init__(self, model): self.model = model self.model.eval() def forward(self, input_ids, attention_mask): return self.model(input_ids, attention_mask) def generate_LRP(self, input_ids, attention_mask, index=None, start_layer=11): output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] kwargs = {"alpha": 1} if index == None: index = np.argmax(output.cpu().data.numpy(), axis=-1) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0, index] = 1 one_hot_vector = one_hot one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot.cuda() * output) self.model.zero_grad() one_hot.backward(retain_graph=True) self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) cams = [] blocks = self.model.bert.encoder.layer for blk in blocks: grad = blk.attention.self.get_attn_gradients() cam = blk.attention.self.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cams.append(cam.unsqueeze(0)) rollout = compute_rollout_attention(cams, start_layer=start_layer) rollout[:, 0, 0] = rollout[:, 0].min() return rollout[:, 0] def generate_LRP_last_layer(self, input_ids, attention_mask, index=None): output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] kwargs = {"alpha": 1} if index == None: index = np.argmax(output.cpu().data.numpy(), axis=-1) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0, index] = 1 one_hot_vector = one_hot one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot.cuda() * output) self.model.zero_grad() one_hot.backward(retain_graph=True) self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) cam = self.model.bert.encoder.layer[-1].attention.self.get_attn_cam()[0] cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0) cam[:, 0, 0] = 0 return cam[:, 0] def generate_full_lrp(self, input_ids, attention_mask, index=None): output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] kwargs = {"alpha": 1} if index == None: index = np.argmax(output.cpu().data.numpy(), axis=-1) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0, index] = 1 one_hot_vector = one_hot one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot.cuda() * output) self.model.zero_grad() one_hot.backward(retain_graph=True) cam = self.model.relprop( torch.tensor(one_hot_vector).to(input_ids.device), **kwargs ) cam = cam.sum(dim=2) cam[:, 0] = 0 return cam def generate_attn_last_layer(self, input_ids, attention_mask, index=None): output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] cam = self.model.bert.encoder.layer[-1].attention.self.get_attn()[0] cam = cam.mean(dim=0).unsqueeze(0) cam[:, 0, 0] = 0 return cam[:, 0] def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None): self.model.zero_grad() output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] blocks = self.model.bert.encoder.layer all_layer_attentions = [] for blk in blocks: attn_heads = blk.attention.self.get_attn() avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() all_layer_attentions.append(avg_heads) rollout = compute_rollout_attention( all_layer_attentions, start_layer=start_layer ) rollout[:, 0, 0] = 0 return rollout[:, 0] def generate_attn_gradcam(self, input_ids, attention_mask, index=None): output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] kwargs = {"alpha": 1} if index == None: index = np.argmax(output.cpu().data.numpy(), axis=-1) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0, index] = 1 one_hot_vector = one_hot one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot.cuda() * output) self.model.zero_grad() one_hot.backward(retain_graph=True) self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) cam = self.model.bert.encoder.layer[-1].attention.self.get_attn() grad = self.model.bert.encoder.layer[-1].attention.self.get_attn_gradients() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) grad = grad.mean(dim=[1, 2], keepdim=True) cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0) cam = (cam - cam.min()) / (cam.max() - cam.min()) cam[:, 0, 0] = 0 return cam[:, 0]