from modules import * from pathlib import Path import pandas as pd from flask import Flask, render_template, request import nltk import pickle from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from joblib import load import sklearn import ssl import os try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context # nltk.download('stopwords') # nltk.download('punkt') # nltk.download('omw-1.4') # nltk.download('wordnet') def check_file_type(file): file_extension = Path(file.filename).suffix.lower() if file_extension == '.eml' or file_extension == '.txt': save_file(file) return 'Extracted Features' # return get_features('email files/' + file.filename) else: return "Please select .eml or .txt file." def save_file(file): with open(os.path.join('email files/', file.name), 'wb') as f: f.write(file.getbuffer()) def text_feature(filepath): text = get_text(filepath) # print(text) if text != "": text = text.split() textlist = ' '.join(text) dataf = pd.DataFrame([[textlist]], columns=['text']) return dataf def html_tags_feature(filepath): tags = get_tags_from_html(get_html_general(filepath)) taglist = ' '.join(tags) if tags !=[] else [] dataf = pd.DataFrame([[taglist]], columns=['tags']) return dataf def extra_feature(filepath): spf = check_spf(filepath) dkim = check_dkim(filepath) dmarc = check_dmarc(filepath) deliver_receiver = check_deliver_receiver(filepath) encript = check_encript(filepath) onclick = get_onclicks(filepath) popwindow = check_popWindow(filepath) extra_data_row = [spf, dkim, dmarc, deliver_receiver, encript, onclick, popwindow] extra_data_row = [0 if x is None else x for x in extra_data_row] extra_data_row = [1 if x is True else x for x in extra_data_row] extra_data_row = [0 if x is False else x for x in extra_data_row] extra_data = pd.DataFrame([extra_data_row], columns=['SPF(Pass:1,Neutral:2,Softdail:3,None:0)', 'DKIM', 'DMARC', 'Deliver-to Matches Receiver', 'Message_encrtpted', 'Onclick_events', 'Popwindow']) return extra_data def num_feature(filepath): body_richness = get_body_richness(filepath) func_words = get_num_FunctionWords(filepath) sbj_richness = get_sbj_richness(filepath) urls = get_num_urls(filepath) ipurls = get_num_urls_ip(filepath) imageurls = get_num_image_urls(filepath) domainurls = get_num_domain_urls(filepath) urlport = get_num_url_ports(filepath) sen_chars = get_chars_sender(filepath) num_data_row = [body_richness, func_words, sbj_richness, urls, ipurls, imageurls, domainurls, urlport, sen_chars] num_data_row = [0 if x is None else x for x in num_data_row] num_data = pd.DataFrame([num_data_row], columns=['body richness', 'Include function words', 'Subject richness', 'Numers of URLs', 'IPURLs', 'ImageURLs', 'DomainURLs', 'URLs contain port information', 'Characters in senders']) return num_data def get_features(filepath): # text textlist = text_feature(filepath) # html tags taglist = html_tags_feature(filepath) #extra feature extra_data = extra_feature(filepath) # Numeric data num_data = num_feature(filepath) combined_df = pd.concat([textlist, taglist, num_data,extra_data], axis=1) # print(combined_df) return combined_df def predict_content(content): content_clf = load("save_models/SVM_finalcontent.pkl") predict = content_clf.predict(preprocess_content(content)) return "Legitimate" if predict[0]=='ham' else "Phishing" def predict_html(html_tag): html_clf = load("save_models/Stack_tag.pkl") predict = html_clf.predict(preprocess_html(html_tag)) return "Legitimate" if predict[0]=='ham' else "Phishing" def predict_num(num_df): num_clf = load("save_models/RF_Num.pkl") predict = num_clf.predict(preprocess_num(num_df)) return "Legitimate" if predict[0]=='ham' else "Phishing" def predict_extra(extra_df): extra_clf = load("save_models/RF_extra.pkl") predict = extra_clf.predict(preprocess_extra(extra_df)) return "Legitimate" if predict[0]=='ham' else "Phishing" def preprocess_content(content): with open('vectorizer/content_tfidf.pickle', 'rb') as f: tfidf = pickle.load(f) # Transform feature input to TF-IDF content_tfidf = tfidf.transform(content) return content_tfidf def preprocess_html(html_tag): with open('vectorizer/html_cv.pickle', 'rb') as f: cv = pickle.load(f) tag_data = cv.transform(html_tag) return tag_data def preprocess_num(num_df): with open('vectorizer/num_scaler.pkl', 'rb') as f: num_scaler = pickle.load(f) scale_num = num_scaler.transform(num_df.values) return scale_num def preprocess_extra(extra_df): with open('vectorizer/extra_scaler.pkl', 'rb') as f: extra_scaler = pickle.load(f) scale_extra = extra_scaler.transform(extra_df.values) return scale_extra lemmatizer = WordNetLemmatizer() def customtokenize(str): # Split string as tokens tokens = nltk.word_tokenize(str) # Filter for stopwords nostop = list(filter(lambda token: token not in stopwords.words('english'), tokens)) # Perform lemmatization lemmatized = [lemmatizer.lemmatize(word) for word in nostop] return lemmatized