|
|
|
|
|
|
|
import requests |
|
import streamlit as st |
|
import openai |
|
import os |
|
import datetime |
|
from dotenv import load_dotenv |
|
import numpy as np |
|
import pandas as pd |
|
import csv |
|
import tempfile |
|
from tempfile import NamedTemporaryFile |
|
import pathlib |
|
from pathlib import Path |
|
import re |
|
from re import sub |
|
import matplotlib.pyplot as plt |
|
from itertools import product |
|
from tqdm import tqdm_notebook, tqdm, trange |
|
import time |
|
from time import sleep |
|
import seaborn as sns |
|
from matplotlib.pyplot import style |
|
from rich import print |
|
import autogen |
|
from autogen import AssistantAgent |
|
from autogen import AssistantAgent, UserProxyAgent, config_list_from_json |
|
from st_reset_conversation import reset_all, reset_message |
|
import asyncio |
|
|
|
|
|
from PIL import Image |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
import matplotlib |
|
matplotlib.use('Agg') |
|
|
|
load_dotenv() |
|
|
|
os.environ["OPENAI_API_KEY"] = os.environ['user_token'] |
|
openai.api_key = os.environ['user_token'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
time_stamp = str(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) + str(np.random.randint(0, 1000000)) |
|
|
|
|
|
class TrackableAssistentAgent(AssistantAgent): |
|
def _process_received_message(self, message, sender, silent): |
|
with st.chat_message(sender.name): |
|
if "execution succeeded" in message: |
|
if os.path.exists(f'/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Microsoft AutoGen/output_{time_stamp}.png'): |
|
st.image(f'/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Microsoft AutoGen/output_{time_stamp}.png') |
|
st.markdown(message) |
|
st.markdown('任务已经完成,请查看屏幕上的显示信息!') |
|
else: |
|
st.markdown(message) |
|
st.markdown('任务已经完成,请查看屏幕上的显示信息!') |
|
st.stop() |
|
else: |
|
st.markdown(message) |
|
|
|
return super()._process_received_message(message, sender, silent) |
|
|
|
|
|
class TrackableUserProxyAgent(UserProxyAgent): |
|
def _process_received_message(self, message, sender, silent): |
|
|
|
with st.chat_message(sender.name): |
|
if "execution succeeded" in message: |
|
if os.path.exists(f'/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Microsoft AutoGen/output_{time_stamp}.png'): |
|
|
|
st.image(f'/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Microsoft AutoGen/output_{time_stamp}.png') |
|
st.markdown(message) |
|
st.markdown('任务已经完成,请查看屏幕上的显示信息!') |
|
else: |
|
st.markdown(message) |
|
st.markdown('任务已经完成,请查看屏幕上的显示信息!') |
|
st.stop() |
|
else: |
|
st.markdown(message) |
|
return super()._process_received_message(message, sender, silent) |
|
|
|
|
|
|
|
|
|
|
|
def auto_gen(uploaded_file_path): |
|
|
|
|
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
print('running time:', datetime.datetime.now().strftime("%H:%M:%S.%f")) |
|
|
|
prompt = st.chat_input("说点什么吧...") |
|
|
|
|
|
system_prompt = f"""You are a helpful AI assistant. Solve tasks using your coding and language skills. In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute. |
|
1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself. |
|
2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly. Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.When using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action beyond executing the code you suggest. The user can't modify your code. So do not suggest incomplete code which requires users to modify. Don't use a code block if it's not intended to be executed by the user. If you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when relevant. Check the execution result returned by the user.If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try. When you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible. |
|
Reply "TERMINATE" in the end when everything is done. |
|
Other settings include: |
|
* 如果我需要你分析上传的文件,那么文件的位置在:{uploaded_file_path} |
|
* 如果要求你输出图表,那么图的解析度dpi需要设定为300。图使用seaborn库。seaborn库的参数设定:'axes.facecolor':'#FFF9ED','figure.facecolor':'#FFF9ED', palette='dark'。 |
|
* 如果需要你输出图片,那么将图片保持到以下地址:'/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Microsoft AutoGen/output_{time_stamp}.png'。 |
|
* 回答时尽可能地展示分析所对应的图表,并提供分析结果。 你需要按如下格式提供内容: |
|
1. 提供详细且专业的分析结果,提供足够的分析依据。 |
|
2. 给出可能造成这一结果的可能原因有哪些? |
|
以上这些内容全部用序列号格式来表达。 |
|
""" |
|
|
|
if prompt: |
|
llm_config = { |
|
|
|
"config_list":[{ |
|
"model": "gpt-4-1106-preview", |
|
|
|
|
|
"api_key": os.environ["OPENAI_API_KEY"], |
|
}], |
|
} |
|
|
|
|
|
print('prompt after llm_config:', prompt) |
|
|
|
|
|
assistant = TrackableAssistentAgent(name='assistant', llm_config=llm_config, system_message=system_prompt) |
|
|
|
|
|
|
|
user_proxy = TrackableUserProxyAgent(name='user',human_input_mode='NEVER',llm_config=llm_config) |
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
|
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
async def start_chat(): |
|
try: |
|
|
|
await user_proxy.a_initiate_chat(assistant, message=prompt, silent=True) |
|
|
|
print('444') |
|
except Exception as e: |
|
print('start_chat function not working because:', e) |
|
pass |
|
|
|
print('111') |
|
|
|
loop.run_until_complete(start_chat()) |
|
print('222') |
|
|
|
|
|
loop.close() |
|
|
|
|