coder001 / app.py
allinaigc's picture
Upload app.py
7fe89de
raw
history blame
12.7 kB
'''
参考: https://github.com/shroominic/codeinterpreter-api
1. 可以存在本地,然后再调出来。 working.
1. 可以在临时文件夹中读取文件。
1. 可以直接在内存中读出图片。
1. 中文字体成功。
from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname='/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/rawdata/SimHei.ttf')
sns.set_style('whitegrid',{'font.sans-serif':['simhei','Arial']})
'''
# TODO:
from codeinterpreterapi import CodeInterpreterSession, File
import streamlit as st
from codeinterpreterapi import CodeInterpreterSession
import openai
import os
import matplotlib.pyplot as plt
import xlrd
import pandas as pd
# from io import StringIO
# import csv
import tempfile
from tempfile import NamedTemporaryFile
import pathlib
from pathlib import Path
from matplotlib.font_manager import FontProperties
import seaborn as sns
os.environ["OPENAI_API_KEY"] = os.environ['user_token']
openai.api_key = os.environ['user_token']
os.environ["VERBOSE"] = "True" # 可以看到具体的错误?
# #* 如果碰到接口问题,可以启用如下设置。
# openai.proxy = {
# "http": "http://127.0.0.1:7890",
# "https": "http://127.0.0.1:7890"
# }
# layout settings.
st.title("个人大语言模型商业智能中心")
st.subheader("Artificial Intelligence Backend Center for Individuals")
# col1, col2 = st.columns(spec=[1, 2])
# radio_1 = col1.radio(label='ChatGPT版本', options=[
# 'GPT-3.5', 'GPT-4.0'], horizontal=True, label_visibility='visible')
# radio_2 = col2.radio(label='模式选择', options=[
# '核心模式', '联网模式', '数据模式'], horizontal=True, label_visibility='visible')
uploaded_file = st.file_uploader(
"选择一个文件", type=(["csv", "xlsx", "xls"]))
if uploaded_file is not None:
filename=uploaded_file.name
# st.write(filename) ## print out the whole file name to validate.
try:
if '.csv' in filename:
csv_file = pd.read_csv(uploaded_file)
st.write(csv_file[:3]) # 这里只是显示文件,后面需要定位文件所在的绝对路径。
else:
xls_file = pd.read_excel(uploaded_file)
st.write(xls_file[:3])
except Exception as e:
st.write(e)
uploaded_file_name = "File_provided"
temp_dir = tempfile.TemporaryDirectory()
# ! working.
uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name
with open(uploaded_file_path, 'wb') as output_temporary_file:
# output_temporary_file.write(uploaded_file.read())
# ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
output_temporary_file.write(uploaded_file.getvalue())
st.write(uploaded_file_path) # * 可以查看文件是否真实存在,然后是否可以
import requests
bing_search_api_key = os.environ['bing_api_key']
bing_search_endpoint = 'https://api.bing.microsoft.com/v7.0/search'
def search(query):
# Construct a request
# mkt = 'en-EN'
mkt = 'zh-CN'
params = {'q': query, 'mkt': mkt}
headers = {'Ocp-Apim-Subscription-Key': bing_search_api_key}
# Call the API
try:
response = requests.get(bing_search_endpoint, headers=headers, params=params)
response.raise_for_status()
json = response.json()
return json["webPages"]["value"]
# print("\nJSON Response:\n")
# pprint(response.json())
except Exception as e:
raise e
# openai.api_key = st.secrets["OPENAI_API_KEY"]
# async def main():
async def main():
col1, col2 = st.columns(spec=[1, 2])
radio_1 = col1.radio(label='ChatGPT版本', options=[
'GPT-3.5', 'GPT-4.0'], horizontal=True, label_visibility='visible')
radio_2 = col2.radio(label='模式选择', options=[
'核心模式', '联网模式', '数据模式'], horizontal=True, label_visibility='visible')
## Set a default model
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
if radio_1 == 'GPT-3.5':
print('radio_1: GPT-3.5 starts!')
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
else:
print('radio_1: GPT-4.0 starts!')
st.session_state["openai_model"] = "gpt-4"
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Display assistant response in chat message container
if prompt := st.chat_input("Ask something?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if radio_2 == '数据分析模式':
print('数据分析模式启动!')
# clear cache to avoid any potential history problems.
st.cache_resource.clear()
with st.chat_message("assistant"):
# message_placeholder = st.empty()
# full_response = ""
async with CodeInterpreterSession() as session:
# user_request = "对于文件中的'SepalLengthCm’数据给我一个'直方图',提供图表,并给出分析结果"
#! 可以用设定dpi=300来输出高质量的图表。(注:图的解析度dpi设定为300)
environ_settings = """【背景要求】如果我没有告诉你任何定制化的要求,那么请你按照以下的默认要求来回答:
-------------------------------------------------------------------------
1. 你需要用提问的语言来回答(如:中文提问你就用中文来回答,英文提问你就用英文来回答)。
2. 如果要求你输出图表,那么图的解析度dpi需要设定为300。图尽量使用seaborn库。seaborn库的参数设定:sns.set(rc={'axes.facecolor':'#FFF9ED','figure.facecolor':'#FFF9ED'}, palette='dark'。
3. 如果需要显示中文,那么设置如下:
3.1 首先,你需要安装中文字体:
myfont=FontProperties(fname='/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/rawdata/SimHei.ttf')
3.2 然后,你需要设定在matplotlib(plt)和seaborn(sns)中设定:
sns.set_style({'font.sans-serif':['Arial','SimHei']})
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family']='sans-serif'
plt.title(fontsize = 18)
-------------------------------------------------------------------------
""" # seaborn中的palette参数可以设定图表的颜色,选项包括:deep, muted, pastel, bright, dark, colorblind,Spectral。更多参数可以参考:https://seaborn.pydata.org/generated/seaborn.color_palette.html。
user_request = environ_settings + "\n\n" + \
"你需要完成以下任务:\n\n" + prompt + \
f"注:文件位置在{uploaded_file_path}"
print('user_request: \n', user_request)
# 加载上传的文件,主要路径在上面代码中。
files = [File.from_path(str(uploaded_file_path))]
with st.status('processing...', expanded=True, state='running') as status:
# generate the response
response = await session.generate_response(
user_request, files=files
)
# output to the user
print("AI: ", response.content)
full_response = response.content
### full_response = "this is full response"
# for file in response.files:
for i, file in enumerate(response.files):
# await file.asave(f"/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/output{i}.png") ##working.
# st.image(file.get_image()) #! working.
# * 注意这里的设定,可以提高图片的精细程度。
st.image(file.get_image(), width=None,
output_format='PNG')
# message_placeholder.markdown(full_response + "▌") ## orignal code.
# message_placeholder.markdown(full_response) ## orignal code.
st.write(full_response)
status.update(label='complete', state='complete')
# st.session_state.messages.append(
# {"role": "assistant", "content": full_response})
await session.astop() #! 确认需要关闭。
# st.session_state.messages.append({"role": "assistant", "content": full_response})
elif radio_2 == '联网模式':
# print('联网模式入口,prompt:', prompt)
input_message = prompt
internet_search_result = search(input_message)
search_prompt = [f"Source:\nTitle: {result['name']}\nURL: {result['url']}\nContent: {result['snippet']}" for result in internet_search_result]
prompt = "基于如下的互联网公开信息, 回答问题:\n\n" + "\n\n".join(search_prompt[:3]) + "\n\n问题: " + input_message + "你需要注意的是回答问题时必须用提问的语言(如英文或者中文)来提示:'答案基于互联网公开信息。'" + "\n\n答案: " ## 限制了只有3个搜索结果。
# prompt = "Use these sources to answer the question:\n\n" + "\n\n".join(search_prompt[0:3]) + "\n\nQuestion: " + input_message + "(注意:回答问题时请提示'以下答案基于互联网公开信息。')\n\n" + "\n\nAnswer: "
st.session_state.messages.append({"role": "user", "content": prompt})
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response})
elif radio_2 == '核心模式':
print('GPT only starts!!!')
print('st.session_state now:', st.session_state)
# st.session_state.messages.append({"role": "system", "content": 'You are a helpful AI assistant: ChatGPT.'})
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
# if len(response)>0:
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response})
if __name__ == "__main__":
import asyncio
# * 也可以用命令执行这个python文件。’streamlit run frontend/app.py‘
asyncio.run(main())