Upload 2 files
Browse files- app.py +158 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
参考: https://github.com/shroominic/codeinterpreter-api
|
3 |
+
|
4 |
+
1. 可以存在本地,然后再调出来。 working.
|
5 |
+
1. 可以直接在内存中读出图片。
|
6 |
+
'''
|
7 |
+
# TODO:如何在内存中读取文件。
|
8 |
+
|
9 |
+
from codeinterpreterapi import CodeInterpreterSession, File
|
10 |
+
import streamlit as st
|
11 |
+
from codeinterpreterapi import CodeInterpreterSession
|
12 |
+
import openai
|
13 |
+
import os
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import pandas as pd
|
16 |
+
from io import StringIO
|
17 |
+
import csv
|
18 |
+
import tempfile
|
19 |
+
from tempfile import NamedTemporaryFile
|
20 |
+
import pathlib
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
|
24 |
+
os.environ["OPENAI_API_KEY"] = os.environ['user_token']
|
25 |
+
openai.api_key = os.environ['user_token']
|
26 |
+
os.environ["VERBOSE"] = "True" # 可以看到具体的错误?
|
27 |
+
|
28 |
+
# # #* 如果碰到接口问题,可以启用如下设置。
|
29 |
+
# openai.proxy = {
|
30 |
+
# "http": "http://127.0.0.1:7890",
|
31 |
+
# "https": "http://127.0.0.1:7890"
|
32 |
+
# }
|
33 |
+
|
34 |
+
|
35 |
+
# st.title("ChatGPT-like clone")
|
36 |
+
st.title("Business Data Analytics by ChatGPT")
|
37 |
+
uploaded_file = st.file_uploader("Choose a file", type=(["csv","txt","xlsx","xls"]))
|
38 |
+
# uploaded_file = st.file_uploader("选择一个文件", type=(["csv","txt","xlsx","xls"]))
|
39 |
+
# st.write(uploaded_file)
|
40 |
+
if uploaded_file is not None:
|
41 |
+
# csv_file = csv.reader(uploaded_file)
|
42 |
+
csv_file = pd.read_csv(uploaded_file)
|
43 |
+
st.write(csv_file[:5]) ## 这里只是显示文件,后面需要定位文件所在的绝对路径。
|
44 |
+
|
45 |
+
uploaded_file_name = "File_provided"
|
46 |
+
temp_dir = tempfile.TemporaryDirectory()
|
47 |
+
uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name #! working.
|
48 |
+
with open(uploaded_file_path, 'wb') as output_temporary_file:
|
49 |
+
# output_temporary_file.write(uploaded_file.read())
|
50 |
+
output_temporary_file.write(uploaded_file.getvalue()) #! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
|
51 |
+
st.write(uploaded_file_path) #* 可以查看文件是否真实存在,然后是否可以
|
52 |
+
|
53 |
+
### how to read data inside streamlit.
|
54 |
+
# # files = pd.read_csv(uploaded_file)
|
55 |
+
# bytes_data = uploaded_file.getvalue()
|
56 |
+
# # st.write(bytes_data)
|
57 |
+
|
58 |
+
# # To convert to a string based IO:
|
59 |
+
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
60 |
+
# # st.write(stringio)
|
61 |
+
|
62 |
+
# # To read file as string:
|
63 |
+
# string_data = stringio.read()
|
64 |
+
# # st.write(string_data)
|
65 |
+
|
66 |
+
# # Can be used wherever a "file-like" object is accepted:
|
67 |
+
# # dataframe = pd.read_csv(uploaded_file)
|
68 |
+
# files = pd.read_csv(uploaded_file, encoding='utf-8')
|
69 |
+
|
70 |
+
# openai.api_key = st.secrets["OPENAI_API_KEY"]
|
71 |
+
|
72 |
+
async def main():
|
73 |
+
if "openai_model" not in st.session_state:
|
74 |
+
# st.session_state["openai_model"] = "gpt-3.5-turbo"
|
75 |
+
st.session_state["openai_model"] = "gpt-4" ##NOTE: data analysis module must use GPT-4.
|
76 |
+
|
77 |
+
if "messages" not in st.session_state:
|
78 |
+
st.session_state.messages = []
|
79 |
+
|
80 |
+
for message in st.session_state.messages:
|
81 |
+
with st.chat_message(message["role"]):
|
82 |
+
st.markdown(message["content"])
|
83 |
+
|
84 |
+
if prompt := st.chat_input("What is up?"):
|
85 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
86 |
+
with st.chat_message("user"):
|
87 |
+
st.markdown(prompt)
|
88 |
+
|
89 |
+
with st.chat_message("assistant"):
|
90 |
+
message_placeholder = st.empty()
|
91 |
+
full_response = ""
|
92 |
+
|
93 |
+
###原始示例 https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
|
94 |
+
# for response in openai.ChatCompletion.create(
|
95 |
+
# model=st.session_state["openai_model"],
|
96 |
+
# messages=[
|
97 |
+
# {"role": m["role"], "content": m["content"]}
|
98 |
+
# for m in st.session_state.messages
|
99 |
+
# ],
|
100 |
+
# stream=True,
|
101 |
+
# ):
|
102 |
+
# full_response += response.choices[0].delta.get("content", "")
|
103 |
+
# message_placeholder.markdown(full_response + "▌")
|
104 |
+
|
105 |
+
async with CodeInterpreterSession() as session:
|
106 |
+
|
107 |
+
# user_request = "对于文件中的'SepalLengthCm’数据给我一个'直方图',提供图表,并给出分析结果"
|
108 |
+
#! 可以用设定dpi=300来输出高质量的图表。(注:图的解析度dpi设定为300)
|
109 |
+
environ_settings = "【背景要求】如果我没有告诉你任何定制化的要求,那么请按照以下的默认要求来回答:1. 你需要用提问的语言来回答(如:中文提问你就用中文来回答,英文提问你就用英文来回答)。2. 如果要求你输出图表,那么图的解析度dpi需要设定为300。图尽量使用seaborn库。seaborn库的参数设定:sns.set(rc={'axes.facecolor':'#FFF9ED','figure.facecolor':'#FFF9ED'}, palette='deep')。" ## seaborn中的palette参数可以设定图表的颜色,选项包括:deep, muted, pastel, bright, dark, colorblind,Spectral。更多参数可以参考:https://seaborn.pydata.org/generated/seaborn.color_palette.html。
|
110 |
+
|
111 |
+
user_request = environ_settings + "\n\n"+ "你需要完成以下任务:\n\n" + prompt
|
112 |
+
# print('user_request: \n', user_request)
|
113 |
+
|
114 |
+
# files = [
|
115 |
+
# # File.from_path("examples/assets/iris.csv"),
|
116 |
+
# # File.from_path("/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/ChatGPT讲课要点 copy.txt"),
|
117 |
+
# # File.from_path("/Users/yunshi/Downloads/360Data/文档/cars.csv"),
|
118 |
+
# # File.from_path("/Users/yunshi/Downloads/360Data/PhD Program/SAS邓祖新/SAS(邓祖新)/sasdata/sasdata/mydir/sasxls.xls"),
|
119 |
+
# # File.from_path("/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/rawdata/时间频数统计.xlsx"),
|
120 |
+
# # File.from_path("/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/rawdata/文献相关数据.xls"),
|
121 |
+
# File.from_path(
|
122 |
+
# "/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/codeinterpreter-api-main/examples/assets/iris.csv"),
|
123 |
+
# ] # user_request = "对于文件中的【SepalLengthCm SepalWidthCm】数据,进行【IsolationForest】的异常值分析。你需要展示分析图表,并给出分析结果。最后,你要给出异常点的原始数据,"
|
124 |
+
|
125 |
+
|
126 |
+
### 加载上传的文件,主要路径在上面代码中。
|
127 |
+
files = [File.from_path(str(uploaded_file_path))]
|
128 |
+
|
129 |
+
### generate the response
|
130 |
+
response = await session.generate_response(
|
131 |
+
user_request, files=files
|
132 |
+
)
|
133 |
+
|
134 |
+
# output to the user
|
135 |
+
print("AI: ", response.content)
|
136 |
+
full_response = response.content
|
137 |
+
### full_response = "this is full response"
|
138 |
+
|
139 |
+
# for file in response.files:
|
140 |
+
for i, file in enumerate(response.files):
|
141 |
+
# await file.asave(f"/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/output{i}.png") ##working.
|
142 |
+
st.image(file.get_image()) #! working.
|
143 |
+
|
144 |
+
|
145 |
+
# message_placeholder.markdown(full_response + "▌") ## orignal code.
|
146 |
+
# message_placeholder.markdown(full_response) ## orignal code.
|
147 |
+
st.write(full_response)
|
148 |
+
await session.astop() #! 确认需要关闭。
|
149 |
+
|
150 |
+
st.session_state.messages.append(
|
151 |
+
{"role": "assistant", "content": full_response})
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
import asyncio
|
157 |
+
# * 也可以用命令执行这个python文件。’streamlit run frontend/app.py‘
|
158 |
+
asyncio.run(main())
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
codeinterpreterapi
|
2 |
+
openai
|
3 |
+
matplotlib
|
4 |
+
pandas
|
5 |
+
pathlib
|