Upload 6 files
Browse files- app.py +312 -100
- localKB_construct copy.py +101 -0
- save_database_info.py +47 -0
app.py
CHANGED
@@ -16,12 +16,9 @@
|
|
16 |
# credentials["usernames"].update({un:user_dict})
|
17 |
credentials["usernames"].update({un: user_dict})
|
18 |
|
19 |
-
|
20 |
-
|
21 |
'''
|
22 |
-
# TODO:1. Chinese display isssue. 2. account system.
|
23 |
|
24 |
-
from dotenv import load_dotenv # pip3 install python-dotenv
|
25 |
import database as db
|
26 |
from deta import Deta # pip3 install deta
|
27 |
import requests
|
@@ -31,7 +28,6 @@ from codeinterpreterapi import CodeInterpreterSession
|
|
31 |
import openai
|
32 |
import os
|
33 |
import matplotlib.pyplot as plt
|
34 |
-
import xlrd
|
35 |
import pandas as pd
|
36 |
# import csv
|
37 |
import tempfile
|
@@ -44,14 +40,21 @@ from time import sleep
|
|
44 |
import streamlit_authenticator as stauth
|
45 |
import database as db # python文件同目录下的.py程序,直接导入。
|
46 |
import deta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
os.environ["OPENAI_API_KEY"] = os.environ['user_token']
|
49 |
openai.api_key = os.environ['user_token']
|
50 |
-
bing_search_api_key = os.environ['bing_api_key']
|
51 |
-
bing_search_endpoint = 'https://api.bing.microsoft.com/v7.0/search'
|
52 |
# os.environ["VERBOSE"] = "True" # 可以看到具体的错误?
|
53 |
|
54 |
-
#
|
55 |
# openai.proxy = {
|
56 |
# "http": "http://127.0.0.1:7890",
|
57 |
# "https": "http://127.0.0.1:7890"
|
@@ -72,40 +75,80 @@ if reset_button:
|
|
72 |
st.session_state.messages = []
|
73 |
message_placeholder = st.empty()
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
|
|
|
|
109 |
|
110 |
|
111 |
def search(query):
|
@@ -129,17 +172,16 @@ def search(query):
|
|
129 |
|
130 |
# openai.api_key = st.secrets["OPENAI_API_KEY"]
|
131 |
|
132 |
-
|
133 |
async def text_mode():
|
134 |
# Set a default model
|
135 |
if "openai_model" not in st.session_state:
|
136 |
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
|
137 |
if radio_1 == 'GPT-3.5':
|
138 |
# print('----------'*5)
|
139 |
-
|
140 |
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
|
141 |
else:
|
142 |
-
|
143 |
st.session_state["openai_model"] = "gpt-4"
|
144 |
|
145 |
# Initialize chat history
|
@@ -154,8 +196,8 @@ async def text_mode():
|
|
154 |
# Display assistant response in chat message container
|
155 |
# if prompt := st.chat_input("Say something"):
|
156 |
prompt = st.chat_input("Say something")
|
157 |
-
|
158 |
-
|
159 |
# if prompt:
|
160 |
if prompt:
|
161 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
@@ -167,7 +209,7 @@ async def text_mode():
|
|
167 |
full_response = ""
|
168 |
|
169 |
if radio_2 == '联网模式':
|
170 |
-
|
171 |
input_message = prompt
|
172 |
internet_search_result = search(input_message)
|
173 |
search_prompt = [
|
@@ -197,8 +239,8 @@ async def text_mode():
|
|
197 |
st.session_state.messages = []
|
198 |
|
199 |
if radio_2 == '核心模式':
|
200 |
-
|
201 |
-
|
202 |
for response in openai.ChatCompletion.create(
|
203 |
model=st.session_state["openai_model"],
|
204 |
# messages=[
|
@@ -218,10 +260,95 @@ async def text_mode():
|
|
218 |
{"role": "assistant", "content": full_response})
|
219 |
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
async def data_mode():
|
222 |
-
|
223 |
# uploaded_file_path = './upload.csv'
|
224 |
-
uploaded_file_path = f'./{
|
|
|
225 |
# # st.write(f"passed file path in data_mode: {uploaded_file_path}")
|
226 |
# tmp1 = pd.read_csv('./upload.csv')
|
227 |
# st.write(tmp1[:5])
|
@@ -238,8 +365,8 @@ async def data_mode():
|
|
238 |
# Display assistant response in chat message container
|
239 |
# if prompt := st.chat_input("Say something"):
|
240 |
prompt = st.chat_input("Say something")
|
241 |
-
|
242 |
-
|
243 |
# if prompt:
|
244 |
if prompt:
|
245 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
@@ -269,7 +396,7 @@ async def data_mode():
|
|
269 |
user_request = environ_settings + "\n\n" + \
|
270 |
"你需要完成以下任务:\n\n" + prompt + "\n\n" \
|
271 |
f"注:文件位置在{uploaded_file_path}"
|
272 |
-
|
273 |
|
274 |
# 加载上传的文件,主要路径在上面代码中。
|
275 |
files = [File.from_path(str(uploaded_file_path))]
|
@@ -281,7 +408,7 @@ async def data_mode():
|
|
281 |
)
|
282 |
|
283 |
# output to the user
|
284 |
-
|
285 |
full_response = response.content
|
286 |
### full_response = "this is full response"
|
287 |
|
@@ -306,19 +433,21 @@ async def data_mode():
|
|
306 |
# st.session_state.messages.append({"role": "assistant", "content": full_response})
|
307 |
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
|
|
|
|
|
322 |
# authentication with a remove cloud-based database.
|
323 |
# 导入云端用户数据库。
|
324 |
|
@@ -329,32 +458,28 @@ async def data_mode():
|
|
329 |
|
330 |
# deta = Deta(DETA_KEY)
|
331 |
|
332 |
-
# mybase is the name of the database in Deta. You can change it to any name you want.
|
333 |
-
credentials = {"usernames":{}}
|
334 |
-
#
|
335 |
-
#
|
336 |
-
|
337 |
-
|
338 |
-
passwords = []
|
339 |
-
names = []
|
340 |
|
341 |
-
for row in db.fetch_all_users():
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
names.append(row["key"])
|
347 |
-
passwords.append(row["password"])
|
348 |
|
349 |
-
hashed_passwords = stauth.Hasher(passwords).generate()
|
350 |
|
351 |
|
352 |
## 需要严格的按照yaml文件的格式来定义如下几个字段。
|
353 |
-
for un, name, pw in zip(users, names, hashed_passwords):
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
|
359 |
# ## sign-up模块,未完成。
|
360 |
# database_table = []
|
@@ -366,12 +491,8 @@ for un, name, pw in zip(users, names, hashed_passwords):
|
|
366 |
# database_table.append([i,credentials['usernames'][i]['name'],credentials['usernames'][i]['password']])
|
367 |
# print("database_table:",database_table)
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
credentials=credentials, cookie_name="joeshi_gpt", key='abcedefg', cookie_expiry_days=30)
|
372 |
-
|
373 |
-
user, authentication_status, username = authenticator.login('用户登录', 'main')
|
374 |
-
# print("name", name, "username", username)
|
375 |
|
376 |
# ## sign-up widget,未完成。
|
377 |
# try:
|
@@ -383,6 +504,11 @@ user, authentication_status, username = authenticator.login('用户登录', 'mai
|
|
383 |
# st.success('注册成功!')
|
384 |
# except Exception as e:
|
385 |
# st.error(e)
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
if authentication_status:
|
388 |
with st.sidebar:
|
@@ -419,7 +545,7 @@ if authentication_status:
|
|
419 |
with st.text(body="说明"):
|
420 |
st.markdown("* “GPT-4”回答质量极佳,但速度缓慢、且不支持长文。建议适当使用。")
|
421 |
with st.text(body="说明"):
|
422 |
-
st.markdown("*
|
423 |
with st.text(body="说明"):
|
424 |
st.markdown(
|
425 |
"* “数据模式”暂时只支持1000个单元格以内的数据分析,单元格中的内容不支持中文数据(表头也尽量不使用中文)。一般���行时间在1-5分钟左右,期间需要保持网络畅通。")
|
@@ -458,28 +584,114 @@ if authentication_status:
|
|
458 |
col1, col2 = st.columns(spec=[1, 2])
|
459 |
radio_2 = col2.radio(label='模式选择', options=[
|
460 |
'核心模式', '联网模式', '知识库模式', '数据模式'], horizontal=True, label_visibility='visible')
|
461 |
-
# radio_1 = col1.selectbox(label='ChatGPT版本', options=[
|
462 |
-
# 'GPT-3.5', 'GPT-4.0'], label_visibility='visible')
|
463 |
radio_1 = col1.radio(label='ChatGPT版本', options=[
|
464 |
'GPT-3.5', 'GPT-4.0'], horizontal=True, label_visibility='visible')
|
465 |
|
466 |
elif authentication_status == False:
|
467 |
st.error('⛔ 用户名或密码错误!')
|
468 |
elif authentication_status == None:
|
469 |
-
st.warning('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
|
472 |
if __name__ == "__main__":
|
473 |
import asyncio
|
474 |
try:
|
475 |
if radio_2 == "核心模式":
|
476 |
-
|
477 |
# * 也可以用命令执行这个python文件。’streamlit run frontend/app.py‘
|
478 |
asyncio.run(text_mode())
|
|
|
479 |
if radio_2 == "联网模式":
|
480 |
-
|
481 |
-
# * 也可以用命令执行这个python文件。’streamlit run frontend/app.py‘
|
482 |
asyncio.run(text_mode())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
if radio_2 == "数据模式":
|
484 |
uploaded_file = st.file_uploader(
|
485 |
"选择一个文件", type=(["csv", "xlsx", "xls"]))
|
|
|
16 |
# credentials["usernames"].update({un:user_dict})
|
17 |
credentials["usernames"].update({un: user_dict})
|
18 |
|
|
|
|
|
19 |
'''
|
20 |
+
# TODO:1. Chinese display isssue. 2. account system. 3. local enterprise database.
|
21 |
|
|
|
22 |
import database as db
|
23 |
from deta import Deta # pip3 install deta
|
24 |
import requests
|
|
|
28 |
import openai
|
29 |
import os
|
30 |
import matplotlib.pyplot as plt
|
|
|
31 |
import pandas as pd
|
32 |
# import csv
|
33 |
import tempfile
|
|
|
40 |
import streamlit_authenticator as stauth
|
41 |
import database as db # python文件同目录下的.py程序,直接导入。
|
42 |
import deta
|
43 |
+
from langchain.chat_models import ChatOpenAI
|
44 |
+
from llama_index import StorageContext, load_index_from_storage, GPTVectorStoreIndex, LLMPredictor, PromptHelper
|
45 |
+
from llama_index import ServiceContext, QuestionAnswerPrompt
|
46 |
+
import sys
|
47 |
+
import time
|
48 |
+
import PyPDF2 ## read the local_KB PDF file.
|
49 |
+
# import localKB_construct
|
50 |
+
import save_database_info
|
51 |
+
from datetime import datetime
|
52 |
|
53 |
os.environ["OPENAI_API_KEY"] = os.environ['user_token']
|
54 |
openai.api_key = os.environ['user_token']
|
|
|
|
|
55 |
# os.environ["VERBOSE"] = "True" # 可以看到具体的错误?
|
56 |
|
57 |
+
# #* 如果碰到接口问题,可以启用如下设置。
|
58 |
# openai.proxy = {
|
59 |
# "http": "http://127.0.0.1:7890",
|
60 |
# "https": "http://127.0.0.1:7890"
|
|
|
75 |
st.session_state.messages = []
|
76 |
message_placeholder = st.empty()
|
77 |
|
78 |
+
def clear_all():
|
79 |
+
st.session_state.conversation = None
|
80 |
+
st.session_state.chat_history = None
|
81 |
+
st.session_state.messages = []
|
82 |
+
message_placeholder = st.empty()
|
83 |
+
return None
|
84 |
+
|
85 |
+
|
86 |
+
# # with tab2:
|
87 |
+
# def upload_file(uploaded_file):
|
88 |
+
# if uploaded_file is not None:
|
89 |
+
# filename = uploaded_file.name
|
90 |
+
# # st.write(filename) # print out the whole file name to validate. not to show in the final version.
|
91 |
+
# try:
|
92 |
+
# if '.pdf' in filename:
|
93 |
+
# # pdf_file = PyPDF2.PdfReader(uploaded_file)
|
94 |
+
# PyPDF2.PdfReader(uploaded_file)
|
95 |
+
# # st.write(pdf_file.pages[0].extract_text())
|
96 |
+
# # with st.status('正在为您解析新知识库...', expanded=False, state='running') as status:
|
97 |
+
# spinner = st.spinner('正在为您解析新知识库...请耐心等待')
|
98 |
+
# # with st.spinner('正在为您解析新知识库...请耐心等待'):
|
99 |
+
# with spinner:
|
100 |
+
# import localKB_construct
|
101 |
+
# # sleep(3)
|
102 |
+
# # st.write(upload_file)
|
103 |
+
# localKB_construct.process_file(uploaded_file)
|
104 |
+
# st.markdown('新知识库解析成功,可以开始对话!')
|
105 |
+
# spinner = st.empty()
|
106 |
+
# # sleep(3)
|
107 |
+
# # display = []
|
108 |
+
|
109 |
+
# else:
|
110 |
+
# if '.csv' in filename:
|
111 |
+
# csv_file = pd.read_csv(uploaded_file)
|
112 |
+
# csv_file.to_csv('./upload.csv', encoding='utf-8', index=False)
|
113 |
+
# st.write(csv_file[:3]) # 这里只是显示文件,后面需要定位文件所在的绝对路径。
|
114 |
+
# else:
|
115 |
+
# xls_file = pd.read_excel(uploaded_file)
|
116 |
+
# xls_file.to_csv('./upload.csv', index=False)
|
117 |
+
# st.write(xls_file[:3])
|
118 |
+
|
119 |
+
# uploaded_file_name = "File_provided"
|
120 |
+
# temp_dir = tempfile.TemporaryDirectory()
|
121 |
+
# # ! working.
|
122 |
+
# uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name
|
123 |
+
# # with open('./upload.csv', 'wb') as output_temporary_file:
|
124 |
+
# with open(f'./{name}_upload.csv', 'wb') as output_temporary_file:
|
125 |
+
# # print(f'./{name}_upload.csv')
|
126 |
+
# # ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
|
127 |
+
# # output_temporary_file.write(uploaded_file.getvalue())
|
128 |
+
# output_temporary_file.write(uploaded_file.getvalue())
|
129 |
+
# # st.write(uploaded_file_path) #* 可以查看文件是否真实存在,然后是否可以
|
130 |
+
# # st.write('Now file saved successfully.')
|
131 |
+
# except Exception as e:
|
132 |
+
# st.write(e)
|
133 |
+
|
134 |
+
# # uploaded_file_name = "File_provided"
|
135 |
+
# # temp_dir = tempfile.TemporaryDirectory()
|
136 |
+
# # # ! working.
|
137 |
+
# # uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name
|
138 |
+
# # # with open('./upload.csv', 'wb') as output_temporary_file:
|
139 |
+
# # with open(f'./{name}_upload.csv', 'wb') as output_temporary_file:
|
140 |
+
# # # print(f'./{name}_upload.csv')
|
141 |
+
# # # ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
|
142 |
+
# # # output_temporary_file.write(uploaded_file.getvalue())
|
143 |
+
# # output_temporary_file.write(uploaded_file.getvalue())
|
144 |
+
# # # st.write(uploaded_file_path) # * 可以查看文件是否真实存在,然后是否可以
|
145 |
+
# # # st.write('Now file saved successfully.')
|
146 |
+
|
147 |
+
# return None
|
148 |
|
149 |
|
150 |
+
bing_search_api_key = os.environ['bing_api_key']
|
151 |
+
bing_search_endpoint = 'https://api.bing.microsoft.com/v7.0/search'
|
152 |
|
153 |
|
154 |
def search(query):
|
|
|
172 |
|
173 |
# openai.api_key = st.secrets["OPENAI_API_KEY"]
|
174 |
|
|
|
175 |
async def text_mode():
|
176 |
# Set a default model
|
177 |
if "openai_model" not in st.session_state:
|
178 |
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
|
179 |
if radio_1 == 'GPT-3.5':
|
180 |
# print('----------'*5)
|
181 |
+
print('radio_1: GPT-3.5 starts!')
|
182 |
st.session_state["openai_model"] = "gpt-3.5-turbo-16k"
|
183 |
else:
|
184 |
+
print('radio_1: GPT-4.0 starts!')
|
185 |
st.session_state["openai_model"] = "gpt-4"
|
186 |
|
187 |
# Initialize chat history
|
|
|
196 |
# Display assistant response in chat message container
|
197 |
# if prompt := st.chat_input("Say something"):
|
198 |
prompt = st.chat_input("Say something")
|
199 |
+
print('prompt now:', prompt)
|
200 |
+
print('----------'*5)
|
201 |
# if prompt:
|
202 |
if prompt:
|
203 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
209 |
full_response = ""
|
210 |
|
211 |
if radio_2 == '联网模式':
|
212 |
+
print('联网模式入口,prompt:', prompt)
|
213 |
input_message = prompt
|
214 |
internet_search_result = search(input_message)
|
215 |
search_prompt = [
|
|
|
239 |
st.session_state.messages = []
|
240 |
|
241 |
if radio_2 == '核心模式':
|
242 |
+
print('GPT only starts!!!')
|
243 |
+
print('messages:', st.session_state['messages'])
|
244 |
for response in openai.ChatCompletion.create(
|
245 |
model=st.session_state["openai_model"],
|
246 |
# messages=[
|
|
|
260 |
{"role": "assistant", "content": full_response})
|
261 |
|
262 |
|
263 |
+
## load the local_KB PDF file.
|
264 |
+
# async def localKB_mode():
|
265 |
+
def localKB_mode(username):
|
266 |
+
### clear all the prior conversation.
|
267 |
+
st.session_state.conversation = None
|
268 |
+
st.session_state.chat_history = None
|
269 |
+
st.session_state.messages = []
|
270 |
+
message_placeholder = st.empty()
|
271 |
+
|
272 |
+
print('now starts the local KB version of ChatGPT')
|
273 |
+
# Initialize chat history
|
274 |
+
if "messages" not in st.session_state:
|
275 |
+
st.session_state.messages = []
|
276 |
+
|
277 |
+
for message in st.session_state.messages:
|
278 |
+
with st.chat_message(message["role"]):
|
279 |
+
st.markdown(message["content"])
|
280 |
+
|
281 |
+
# Display assistant response in chat message container
|
282 |
+
# if prompt := st.chat_input("Say something"):
|
283 |
+
# prompt = st.chat_input("Say something")
|
284 |
+
# print('prompt now:', prompt)
|
285 |
+
# print('----------'*5)
|
286 |
+
# if prompt:
|
287 |
+
if prompt := st.chat_input("Say something"):
|
288 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
289 |
+
with st.chat_message("user"):
|
290 |
+
st.markdown(prompt)
|
291 |
+
|
292 |
+
with st.status('检索中...', expanded=True, state='running') as status:
|
293 |
+
with st.chat_message("assistant"):
|
294 |
+
message_placeholder = st.empty()
|
295 |
+
full_response = ""
|
296 |
+
|
297 |
+
# if radio_2 == "知识库模式":
|
298 |
+
# ! 这里需要重新装载一下storage_context。
|
299 |
+
QA_PROMPT_TMPL = (
|
300 |
+
"We have provided context information below. \n"
|
301 |
+
"---------------------\n"
|
302 |
+
"{context_str}"
|
303 |
+
"\n---------------------\n"
|
304 |
+
"Given all this information, please answer the following questions,"
|
305 |
+
"You MUST use the SAME language as the question:\n"
|
306 |
+
"{query_str}\n")
|
307 |
+
QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
|
308 |
+
# print('QA_PROMPT:', QA_PROMPT)
|
309 |
+
|
310 |
+
# llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.8, model_name="gpt-3.5-turbo", max_tokens=4024,streaming=True))
|
311 |
+
# # print('llm_predictor:', llm_predictor)
|
312 |
+
# prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
313 |
+
# print('prompt_helper:', prompt_helper)
|
314 |
+
# service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
315 |
+
# print('service_context:', service_context)
|
316 |
+
# # # index = load_index_from_storage(storage_context)
|
317 |
+
# print("storage_context:", storage_context)
|
318 |
+
# index = load_index_from_storage(storage_context,service_context=service_context)
|
319 |
+
storage_context = StorageContext.from_defaults(persist_dir=f"./{username}/")
|
320 |
+
print('storage_context:',storage_context)
|
321 |
+
index = load_index_from_storage(storage_context)
|
322 |
+
|
323 |
+
# query_engine = index.as_query_engine(streaming=True, similarity_top_k=3, text_qa_template=QA_PROMPT)
|
324 |
+
query_engine = index.as_query_engine(streaming=True)
|
325 |
+
# query_engine = index.as_query_engine(streaming=True, text_qa_template=QA_PROMPT)
|
326 |
+
# query_engine = index.as_query_engine(streaming=False, text_qa_template=QA_PROMPT)
|
327 |
+
# query_engine = index.as_query_engine()
|
328 |
+
# reply = query_engine.query(prompt)
|
329 |
+
|
330 |
+
llama_index_reply = query_engine.query(prompt)
|
331 |
+
# full_response += query_engine.query(prompt)
|
332 |
+
print('local KB reply:', llama_index_reply)
|
333 |
+
# query_engine.query(prompt).print_response_stream() #* 能在terminal中流式输出。
|
334 |
+
# for resp in llama_index_reply.response_gen:
|
335 |
+
# print(resp)
|
336 |
+
# full_response += resp
|
337 |
+
# message_placeholder.markdown(full_response + "▌")
|
338 |
+
message_placeholder.markdown(llama_index_reply)
|
339 |
+
# st.session_state.messages.append(
|
340 |
+
# {"role": "assistant", "content": full_response})
|
341 |
+
# st.session_state.messages = []
|
342 |
+
# full_response += reply
|
343 |
+
# full_response = reply
|
344 |
+
# st.session_state.messages.append(
|
345 |
+
# {"role": "assistant", "content": full_response})
|
346 |
+
|
347 |
async def data_mode():
|
348 |
+
print('数据分析模式启动!')
|
349 |
# uploaded_file_path = './upload.csv'
|
350 |
+
# uploaded_file_path = f'./{joejoe}_upload.csv'
|
351 |
+
uploaded_file_path = f'./joejoe_upload.csv'
|
352 |
# # st.write(f"passed file path in data_mode: {uploaded_file_path}")
|
353 |
# tmp1 = pd.read_csv('./upload.csv')
|
354 |
# st.write(tmp1[:5])
|
|
|
365 |
# Display assistant response in chat message container
|
366 |
# if prompt := st.chat_input("Say something"):
|
367 |
prompt = st.chat_input("Say something")
|
368 |
+
print('prompt now:', prompt)
|
369 |
+
print('----------'*5)
|
370 |
# if prompt:
|
371 |
if prompt:
|
372 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
396 |
user_request = environ_settings + "\n\n" + \
|
397 |
"你需要完成以下任务:\n\n" + prompt + "\n\n" \
|
398 |
f"注:文件位置在{uploaded_file_path}"
|
399 |
+
print('user_request: \n', user_request)
|
400 |
|
401 |
# 加载上传的文件,主要路径在上面代码中。
|
402 |
files = [File.from_path(str(uploaded_file_path))]
|
|
|
408 |
)
|
409 |
|
410 |
# output to the user
|
411 |
+
print("AI: ", response.content)
|
412 |
full_response = response.content
|
413 |
### full_response = "this is full response"
|
414 |
|
|
|
433 |
# st.session_state.messages.append({"role": "assistant", "content": full_response})
|
434 |
|
435 |
|
436 |
+
### authentication with a local yaml file.
|
437 |
+
import yaml
|
438 |
+
from yaml.loader import SafeLoader
|
439 |
+
with open('/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/config.yaml') as file:
|
440 |
+
config = yaml.load(file, Loader=SafeLoader)
|
441 |
+
authenticator = stauth.Authenticate(
|
442 |
+
config['credentials'],
|
443 |
+
config['cookie']['name'],
|
444 |
+
config['cookie']['key'],
|
445 |
+
config['cookie']['expiry_days'],
|
446 |
+
config['preauthorized']
|
447 |
+
)
|
448 |
|
449 |
+
|
450 |
+
###'''authentication with a remove cloud-based database.'''
|
451 |
# authentication with a remove cloud-based database.
|
452 |
# 导入云端用户数据库。
|
453 |
|
|
|
458 |
|
459 |
# deta = Deta(DETA_KEY)
|
460 |
|
461 |
+
# # mybase is the name of the database in Deta. You can change it to any name you want.
|
462 |
+
# credentials = {"usernames":{}}
|
463 |
+
# users = []
|
464 |
+
# email = []
|
465 |
+
# passwords = []
|
466 |
+
# names = []
|
|
|
|
|
467 |
|
468 |
+
# for row in db.fetch_all_users():
|
469 |
+
# users.append(row["username"])
|
470 |
+
# email.append(row["email"])
|
471 |
+
# names.append(row["key"])
|
472 |
+
# passwords.append(row["password"])
|
|
|
|
|
473 |
|
474 |
+
# hashed_passwords = stauth.Hasher(passwords).generate()
|
475 |
|
476 |
|
477 |
## 需要严格的按照yaml文件的格式来定义如下几个字段。
|
478 |
+
# for un, name, pw in zip(users, names, hashed_passwords):
|
479 |
+
# # user_dict = {"name":name,"password":pw}
|
480 |
+
# user_dict = {"name": un, "password": pw}
|
481 |
+
# # credentials["usernames"].update({un:user_dict})
|
482 |
+
# credentials["usernames"].update({un: user_dict})
|
483 |
|
484 |
# ## sign-up模块,未完成。
|
485 |
# database_table = []
|
|
|
491 |
# database_table.append([i,credentials['usernames'][i]['name'],credentials['usernames'][i]['password']])
|
492 |
# print("database_table:",database_table)
|
493 |
|
494 |
+
# authenticator = stauth.Authenticate(
|
495 |
+
# credentials=credentials, cookie_name="joeshi_gpt", key='abcedefg', cookie_expiry_days=30)
|
|
|
|
|
|
|
|
|
496 |
|
497 |
# ## sign-up widget,未完成。
|
498 |
# try:
|
|
|
504 |
# st.success('注册成功!')
|
505 |
# except Exception as e:
|
506 |
# st.error(e)
|
507 |
+
''''''
|
508 |
+
|
509 |
+
# user, authentication_status, username = authenticator.login('用户登录', 'main')
|
510 |
+
user, authentication_status, username = authenticator.login('用户登录', 'sidebar')
|
511 |
+
# print("name", name, "username", username)
|
512 |
|
513 |
if authentication_status:
|
514 |
with st.sidebar:
|
|
|
545 |
with st.text(body="说明"):
|
546 |
st.markdown("* “GPT-4”回答质量极佳,但速度缓慢、且不支持长文。建议适当使用。")
|
547 |
with st.text(body="说明"):
|
548 |
+
st.markdown("* “联网模式”和“知识库模式”均基于检索功能,仅限一轮对话,不会保持之前的会话记录。")
|
549 |
with st.text(body="说明"):
|
550 |
st.markdown(
|
551 |
"* “数据模式”暂时只支持1000个单元格以内的数据分析,单元格中的内容不支持中文数据(表头也尽量不使用中文)。一般���行时间在1-5分钟左右,期间需要保持网络畅通。")
|
|
|
584 |
col1, col2 = st.columns(spec=[1, 2])
|
585 |
radio_2 = col2.radio(label='模式选择', options=[
|
586 |
'核心模式', '联网模式', '知识库模式', '数据模式'], horizontal=True, label_visibility='visible')
|
|
|
|
|
587 |
radio_1 = col1.radio(label='ChatGPT版本', options=[
|
588 |
'GPT-3.5', 'GPT-4.0'], horizontal=True, label_visibility='visible')
|
589 |
|
590 |
elif authentication_status == False:
|
591 |
st.error('⛔ 用户名或密码错误!')
|
592 |
elif authentication_status == None:
|
593 |
+
st.warning('⬅ 请先登录!')
|
594 |
+
|
595 |
+
### 上传文件的模块
|
596 |
+
def upload_file(uploaded_file):
|
597 |
+
if uploaded_file is not None:
|
598 |
+
filename = uploaded_file.name
|
599 |
+
# st.write(filename) # print out the whole file name to validate. not to show in the final version.
|
600 |
+
try:
|
601 |
+
if '.pdf' in filename:
|
602 |
+
# pdf_file = PyPDF2.PdfReader(uploaded_file)
|
603 |
+
PyPDF2.PdfReader(uploaded_file)
|
604 |
+
# st.write(pdf_file.pages[0].extract_text())
|
605 |
+
# with st.status('正在为您解析新知识库...', expanded=False, state='running') as status:
|
606 |
+
spinner = st.spinner('正在为您解析新知识库...请耐心等待')
|
607 |
+
# with st.spinner('正在为您解析新知识库...请耐心等待'):
|
608 |
+
with spinner:
|
609 |
+
import localKB_construct
|
610 |
+
# st.write(upload_file)
|
611 |
+
localKB_construct.process_file(uploaded_file, username)
|
612 |
+
save_database_info.save_database_info(f'./{username}/database_name.csv', filename, str(datetime.now().strftime("%Y-%m-%d %H:%M")))
|
613 |
+
st.markdown('新知识库解析成功,请务必刷新页面,然后开启对话 🔁')
|
614 |
+
# spinner = st.empty()
|
615 |
+
|
616 |
+
else:
|
617 |
+
if '.csv' in filename:
|
618 |
+
csv_file = pd.read_csv(uploaded_file)
|
619 |
+
csv_file.to_csv(f'./{username}/upload.csv', encoding='utf-8', index=False)
|
620 |
+
st.write(csv_file[:3]) # 这里只是显示文件,后面需要定位文件所在的绝对路径。
|
621 |
+
else:
|
622 |
+
xls_file = pd.read_excel(uploaded_file)
|
623 |
+
xls_file.to_csv(f'./{username}/upload.csv', index=False)
|
624 |
+
st.write(xls_file[:3])
|
625 |
+
|
626 |
+
uploaded_file_name = "File_provided"
|
627 |
+
temp_dir = tempfile.TemporaryDirectory()
|
628 |
+
# ! working.
|
629 |
+
uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name
|
630 |
+
# with open('./upload.csv', 'wb') as output_temporary_file:
|
631 |
+
with open(f'./{username}_upload.csv', 'wb') as output_temporary_file:
|
632 |
+
# print(f'./{name}_upload.csv')
|
633 |
+
# ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
|
634 |
+
# output_temporary_file.write(uploaded_file.getvalue())
|
635 |
+
output_temporary_file.write(uploaded_file.getvalue())
|
636 |
+
# st.write(uploaded_file_path) #* 可以查看文件是否真实存在,然后是否可以
|
637 |
+
# st.write('Now file saved successfully.')
|
638 |
+
except Exception as e:
|
639 |
+
st.write(e)
|
640 |
+
|
641 |
+
## 以下代码是为了解决上传文件后,文件路径和文件名不对的问题。
|
642 |
+
# uploaded_file_name = "File_provided"
|
643 |
+
# temp_dir = tempfile.TemporaryDirectory()
|
644 |
+
# # ! working.
|
645 |
+
# uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name
|
646 |
+
# # with open('./upload.csv', 'wb') as output_temporary_file:
|
647 |
+
# with open(f'./{name}_upload.csv', 'wb') as output_temporary_file:
|
648 |
+
# # print(f'./{name}_upload.csv')
|
649 |
+
# # ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。
|
650 |
+
# # output_temporary_file.write(uploaded_file.getvalue())
|
651 |
+
# output_temporary_file.write(uploaded_file.getvalue())
|
652 |
+
# # st.write(uploaded_file_path) # * 可以查看文件是否真实存在,然后是否可以
|
653 |
+
# # st.write('Now file saved successfully.')
|
654 |
+
|
655 |
+
return None
|
656 |
|
657 |
|
658 |
if __name__ == "__main__":
|
659 |
import asyncio
|
660 |
try:
|
661 |
if radio_2 == "核心模式":
|
662 |
+
print(f'radio 选择了 {radio_2}')
|
663 |
# * 也可以用命令执行这个python文件。’streamlit run frontend/app.py‘
|
664 |
asyncio.run(text_mode())
|
665 |
+
|
666 |
if radio_2 == "联网模式":
|
667 |
+
print(f'radio 选择了 {radio_2}')
|
|
|
668 |
asyncio.run(text_mode())
|
669 |
+
|
670 |
+
if radio_2 == "知识库模式":
|
671 |
+
print(f'radio 选择了 {radio_2}')
|
672 |
+
|
673 |
+
path = f'./{username}/vector_store.json'
|
674 |
+
if os.path.exists(path):
|
675 |
+
database_info = pd.read_csv(f'./{username}/database_name.csv')
|
676 |
+
current_database_name = database_info.iloc[-1][0]
|
677 |
+
current_database_date = database_info.iloc[-1][1]
|
678 |
+
database_claim = f"当前知识库为:{current_database_name},创建于{current_database_date}。可以开始提问!"
|
679 |
+
st.markdown(database_claim)
|
680 |
+
# st.markdown("注意:系统中已经存在一个知识库,您现在可以开始提问!")
|
681 |
+
|
682 |
+
uploaded_file = st.file_uploader(
|
683 |
+
"选择上传一个新知识库", type=(["pdf"]))
|
684 |
+
# 默认状态下没有上传文件,None,会报错。需要判断。
|
685 |
+
if uploaded_file is not None:
|
686 |
+
# uploaded_file_path = upload_file(uploaded_file)
|
687 |
+
upload_file(uploaded_file)
|
688 |
+
# st.write('PDF file uploaded sucessfully!')
|
689 |
+
# clear_all()
|
690 |
+
# spinner = st.empty()
|
691 |
+
|
692 |
+
localKB_mode(username)
|
693 |
+
# asyncio.run(localKB_mode())
|
694 |
+
|
695 |
if radio_2 == "数据模式":
|
696 |
uploaded_file = st.file_uploader(
|
697 |
"选择一个文件", type=(["csv", "xlsx", "xls"]))
|
localKB_construct copy.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
1.更新了llama-index的库。对应的函数名和用法都有所改变。
|
3 |
+
'''
|
4 |
+
|
5 |
+
# import gradio as gr
|
6 |
+
import openai
|
7 |
+
import requests
|
8 |
+
import csv
|
9 |
+
from llama_index import PromptHelper
|
10 |
+
# from llama_index import GPTSimpleVectorIndex ## renamed in the latest version.
|
11 |
+
from llama_index import LLMPredictor
|
12 |
+
from llama_index import ServiceContext
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain import OpenAI
|
15 |
+
from fastapi import FastAPI #* 实现流式数据
|
16 |
+
from fastapi.responses import StreamingResponse #* 实现流式数据
|
17 |
+
import sys
|
18 |
+
import os
|
19 |
+
import torch
|
20 |
+
import math
|
21 |
+
import pandas as pd
|
22 |
+
import numpy as np
|
23 |
+
import PyPDF2
|
24 |
+
# from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper #* working in the previous version.
|
25 |
+
|
26 |
+
##* in the latest version: GPTSimpleVectorIndex was renamed to GPTVectorStoreIndex, try removing it from the end of your imports
|
27 |
+
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTVectorStoreIndex, LLMPredictor, PromptHelper
|
28 |
+
from llama_index import StorageContext, load_index_from_storage
|
29 |
+
from llama_index import ServiceContext
|
30 |
+
from llama_index import download_loader
|
31 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
32 |
+
import sys
|
33 |
+
import os
|
34 |
+
from rich import print
|
35 |
+
|
36 |
+
## enironment settings.
|
37 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
38 |
+
openai.api_key = "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"
|
39 |
+
# file_path = "/Users/yunshi/Downloads/txt_dir/Sparks_of_AGI.pdf"
|
40 |
+
# file_path = "/Users/yunshi/Downloads/txt_dir/2023年百人会电动论坛 纪要 20230401.pdf"
|
41 |
+
|
42 |
+
## 建立index或者的过程。
|
43 |
+
def construct_index(directory_path):
|
44 |
+
# file_path = f"{directory_path}/uploaded_file.pdf"
|
45 |
+
|
46 |
+
file_path = directory_path
|
47 |
+
|
48 |
+
# set maximum input si771006
|
49 |
+
# max_input_size = 4096 #* working
|
50 |
+
max_input_size = 4096
|
51 |
+
# set number of output tokens
|
52 |
+
# num_outputs = 3000 #* working
|
53 |
+
num_outputs = 1000
|
54 |
+
# set maximum chunk overlap
|
55 |
+
max_chunk_overlap = -1000 #* working
|
56 |
+
# set chunk size limit
|
57 |
+
# chunk_size_limit = 600
|
58 |
+
chunk_size_limit = 6000 #* working
|
59 |
+
|
60 |
+
# ## add chunk_overlap_ratio according to github.
|
61 |
+
# chunk_overlap_ratio= 0.1
|
62 |
+
|
63 |
+
|
64 |
+
# define LLM
|
65 |
+
# llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=2000))
|
66 |
+
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.7, model_name="gpt-3.5-turbo-16k", max_tokens=512,streaming=True))
|
67 |
+
|
68 |
+
## 好像work了,2023.09.22, 注意这里的写法有调整。
|
69 |
+
# prompt_helper = PromptHelper(max_input_s≈ize, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
70 |
+
prompt_helper = PromptHelper(max_input_size, num_outputs, chunk_overlap_ratio= 0.1, chunk_size_limit=chunk_size_limit)
|
71 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
72 |
+
|
73 |
+
## 如果是txt文件,那么需要用如下命令。注意与PDF文件的区别。
|
74 |
+
# documents = SimpleDirectoryReader(directory_path).load_data()
|
75 |
+
|
76 |
+
## 如果是PDF文件,那么需要用如下命令。注意与txt文件的区别。切需要from llama_index import download_loader。
|
77 |
+
#NOTE: 这里可以问:give me an example of GPT-4 solving math problem. 会回答关于这个PDF中的内容,所以可以确认这个程序调用了in-context learning的功能。
|
78 |
+
CJKPDFReader = download_loader("CJKPDFReader")
|
79 |
+
loader = CJKPDFReader()
|
80 |
+
# documents = loader.load_data(file=directory_path) #! 注意这里是指向文件本身,而不同于txt文件的指文件夹。
|
81 |
+
documents = loader.load_data(file=directory_path) #! 注意这里是指向文件本身,而不同于txt文件的指文件夹。
|
82 |
+
# index = GPTSimpleVectorIndex(
|
83 |
+
# documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
84 |
+
# )
|
85 |
+
|
86 |
+
# index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) ## oringinal version, working.
|
87 |
+
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context) #* the funciton renamed.
|
88 |
+
# index.save_to_disk('/Users/yunshi/Downloads/txt_dir/index.json') ## in the latest version, this function is not working.
|
89 |
+
|
90 |
+
return index, service_context
|
91 |
+
|
92 |
+
def process_file():
|
93 |
+
print('process_file starts')
|
94 |
+
file_path = "/Users/yunshi/Downloads/txt_dir/Sparks_of_AGI.pdf"
|
95 |
+
#! 第一次运行是需要开启这个function。如果测试通过index,因此不需要在运行了。记得上传PDF和JSON文件到云服务器上。
|
96 |
+
index, service_context = construct_index(file_path)
|
97 |
+
# index.storage_context.persist(persist_dir="/Users/yunshi/Downloads/txt_dir/") #* 存储到本地,为以后调用。
|
98 |
+
index.storage_context.persist(persist_dir=f"./") #* 存储到本地,为以后调用。
|
99 |
+
print(index)
|
100 |
+
|
101 |
+
process_file()
|
save_database_info.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
from re import sub
|
6 |
+
import smtplib
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from itertools import product
|
9 |
+
from tqdm import tqdm_notebook, tqdm, trange
|
10 |
+
import time
|
11 |
+
import seaborn as sns
|
12 |
+
from matplotlib.pyplot import style
|
13 |
+
from rich import print
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
sns.set()
|
17 |
+
# style.use('seaborn')
|
18 |
+
|
19 |
+
import csv
|
20 |
+
|
21 |
+
def save_database_info(filepath, database_name, date):
|
22 |
+
# 读取CSV文件
|
23 |
+
with open('/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/test/database_name.csv', 'r', encoding='utf-8') as file:
|
24 |
+
# 创建CSV读取器
|
25 |
+
reader = csv.reader(file)
|
26 |
+
|
27 |
+
# 将内容存储到列表中
|
28 |
+
rows = []
|
29 |
+
for row in reader:
|
30 |
+
rows.append(row)
|
31 |
+
|
32 |
+
# 添加新行
|
33 |
+
# new_row = ['New Data 1', 'New Data 2'] # 新行的数据
|
34 |
+
new_row = [database_name, date] # 新行的数据
|
35 |
+
rows.append(new_row)
|
36 |
+
|
37 |
+
# 写入CSV文件
|
38 |
+
with open('/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/test/database_name.csv', 'w', newline='', encoding='utf-8') as file:
|
39 |
+
# 创建CSV写入器
|
40 |
+
writer = csv.writer(file)
|
41 |
+
# 写入所有行
|
42 |
+
writer.writerows(rows)
|
43 |
+
|
44 |
+
# close the file to save the data.
|
45 |
+
file.close()
|
46 |
+
|
47 |
+
return None
|