''' 参考: https://github.com/shroominic/codeinterpreter-api 1. 可以存在本地,然后再调出来。 working. 1. 可以在临时文件夹中读取文件。 1. 可以直接在内存中读出图片。 1. 中文字体成功。 from matplotlib.font_manager import FontProperties myfont=FontProperties(fname='/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/rawdata/SimHei.ttf') sns.set_style('whitegrid',{'font.sans-serif':['simhei','Arial']}) 1. 解决了account login的问题,主要格式: ## 需要严格的按照yaml文件的格式来定义如下几个字段。 for un, name, pw in zip(users, names, hashed_passwords): # user_dict = {"name":name,"password":pw} user_dict = {"name": un, "password": pw} # credentials["usernames"].update({un:user_dict}) credentials["usernames"].update({un: user_dict}) ''' # TODO:1. Chinese display isssue. 2. account system. from dotenv import load_dotenv # pip3 install python-dotenv import database as db from deta import Deta # pip3 install deta import requests from codeinterpreterapi import CodeInterpreterSession, File import streamlit as st from codeinterpreterapi import CodeInterpreterSession import openai import os import matplotlib.pyplot as plt import xlrd import pandas as pd # import csv import tempfile from tempfile import NamedTemporaryFile import pathlib from pathlib import Path from matplotlib.font_manager import FontProperties import seaborn as sns from time import sleep import streamlit_authenticator as stauth import database as db # python文件同目录下的.py程序,直接导入。 import deta os.environ["OPENAI_API_KEY"] = os.environ['user_token'] openai.api_key = os.environ['user_token'] bing_search_api_key = os.environ['bing_api_key'] bing_search_endpoint = 'https://api.bing.microsoft.com/v7.0/search' # os.environ["VERBOSE"] = "True" # 可以看到具体的错误? # # #* 如果碰到接口问题,可以启用如下设置。 # openai.proxy = { # "http": "http://127.0.0.1:7890", # "https": "http://127.0.0.1:7890" # } # layout settings. st.title("专业版大语言模型商业智能中心") st.subheader("Artificial Intelligence Backend Center for Professionals") # clear conversion. reset_button_key = "reset_button" reset_button = st.button(label=("扫清世间烦恼,清除所有记录,并开启一轮新对话 ▶"), key=reset_button_key, use_container_width=True, type="secondary") if reset_button: st.session_state.conversation = None st.session_state.chat_history = None st.session_state.messages = [] message_placeholder = st.empty() # with tab2: def upload_file(uploaded_file): if uploaded_file is not None: filename = uploaded_file.name st.write(filename) # print out the whole file name to validate. try: if '.csv' in filename: csv_file = pd.read_csv(uploaded_file) csv_file.to_csv('./upload.csv', encoding='utf-8', index=False) st.write(csv_file[:3]) # 这里只是显示文件,后面需要定位文件所在的绝对路径。 else: xls_file = pd.read_excel(uploaded_file) xls_file.to_csv('./upload.csv', index=False) st.write(xls_file[:3]) except Exception as e: st.write(e) uploaded_file_name = "File_provided" temp_dir = tempfile.TemporaryDirectory() # ! working. uploaded_file_path = pathlib.Path(temp_dir.name) / uploaded_file_name # with open('./upload.csv', 'wb') as output_temporary_file: with open(f'./{name}_upload.csv', 'wb') as output_temporary_file: # print(f'./{name}_upload.csv') # ! 必须用这种格式读入内容,然后才可以写入temporary文件夹中。 # output_temporary_file.write(uploaded_file.getvalue()) output_temporary_file.write(uploaded_file.getvalue()) # st.write(uploaded_file_path) # * 可以查看文件是否真实存在,然后是否可以 # st.write('Now file saved successfully.') return None def search(query): # Construct a request # mkt = 'en-EN' mkt = 'zh-CN' params = {'q': query, 'mkt': mkt} headers = {'Ocp-Apim-Subscription-Key': bing_search_api_key} # Call the API try: response = requests.get(bing_search_endpoint, headers=headers, params=params) response.raise_for_status() json = response.json() return json["webPages"]["value"] # print("\nJSON Response:\n") # pprint(response.json()) except Exception as e: raise e # openai.api_key = st.secrets["OPENAI_API_KEY"] async def text_mode(): # Set a default model if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-3.5-turbo-16k" if radio_1 == 'GPT-3.5': # print('----------'*5) print('radio_1: GPT-3.5 starts!') st.session_state["openai_model"] = "gpt-3.5-turbo-16k" else: print('radio_1: GPT-4.0 starts!') st.session_state["openai_model"] = "gpt-4" # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Display assistant response in chat message container # if prompt := st.chat_input("Say something"): prompt = st.chat_input("Say something") print('prompt now:', prompt) print('----------'*5) # if prompt: if prompt: st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" if radio_2 == '联网模式': print('联网模式入口,prompt:', prompt) input_message = prompt internet_search_result = search(input_message) search_prompt = [ f"Source:\nTitle: {result['name']}\nURL: {result['url']}\nContent: {result['snippet']}" for result in internet_search_result] prompt = "基于如下的互联网公开信息, 回答问题:\n\n" + \ "\n\n".join(search_prompt[:3]) + "\n\n问题: " + input_message + \ "你需要注意的是回答问题时必须用提问的语言(如英文或者中文)来提示:'答案基于互联网公开信息。'" + "\n\n答案: " # 限制了只有3个搜索结果。 # prompt = "Use these sources to answer the question:\n\n" + "\n\n".join(search_prompt[0:3]) + "\n\nQuestion: " + input_message + "(注意:回答问题时请提示'以下答案基于互联网公开信息。')\n\n" + "\n\nAnswer: " st.session_state.messages.append( {"role": "user", "content": prompt}) for response in openai.ChatCompletion.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], stream=True, ): full_response += response.choices[0].delta.get( "content", "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append( {"role": "assistant", "content": full_response}) st.session_state.messages = [] if radio_2 == '核心模式': print('GPT only starts!!!') print('messages:', st.session_state['messages']) for response in openai.ChatCompletion.create( model=st.session_state["openai_model"], # messages=[ # {"role": m["role"], "content": m["content"]} # for m in st.session_state.messages # ], messages=[{'role': 'system', 'content': 'you are ChatGPT'}, { 'role': 'user', 'content': prompt}], stream=True, ): full_response += response.choices[0].delta.get( "content", "") message_placeholder.markdown(full_response + "▌") print('session completed!') message_placeholder.markdown(full_response) st.session_state.messages.append( {"role": "assistant", "content": full_response}) async def data_mode(): print('数据分析模式启动!') # uploaded_file_path = './upload.csv' uploaded_file_path = f'./{name}_upload.csv' # # st.write(f"passed file path in data_mode: {uploaded_file_path}") # tmp1 = pd.read_csv('./upload.csv') # st.write(tmp1[:5]) # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Display assistant response in chat message container # if prompt := st.chat_input("Say something"): prompt = st.chat_input("Say something") print('prompt now:', prompt) print('----------'*5) # if prompt: if prompt: st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): async with CodeInterpreterSession() as session: # user_request = "对于文件中的'SepalLengthCm’数据给我一个'直方图',提供图表,并给出分析结果" #! 可以用设定dpi=300来输出高质量的图表。(注:图的解析度dpi设定为300) environ_settings = """【背景要求】如果我没有告诉你任何定制化的要求,那么请你按照以下的默认要求来回答: ------------------------------------------------------------------------- 1. 你需要用提问的语言来回答(如:中文提问你就用中文来回答,英文提问你就用英文来回答)。 2. 如果要求你输出图表,那么图的解析度dpi需要设定为600。图尽量使用seaborn库。seaborn库的参数设定:sns.set(rc={'axes.facecolor':'#FFF9ED','figure.facecolor':'#FFF9ED'}, palette='dark'。 3. 图上所有的文字全部翻译成<英文English>来表示。 4. 回答时尽可能地展示分析所对应的图表,并提供分析结果。 你需要按如下格式提供内容: 1. 提供详细且专业的分析结果,提供足够的分析依据。 2. 给出可能造成这一结果的可能原因有哪些? 以上内容全部用序列号格式来表达。 ------------------------------------------------------------------------- """ # seaborn中的palette参数可以设定图表的颜色,选项包括:deep, muted, pastel, bright, dark, colorblind,Spectral。更多参数可以参考:https://seaborn.pydata.org/generated/seaborn.color_palette.html。 # uploaded_file_path = upload_file() user_request = environ_settings + "\n\n" + \ "你需要完成以下任务:\n\n" + prompt + "\n\n" \ f"注:文件位置在{uploaded_file_path}" print('user_request: \n', user_request) # 加载上传的文件,主要路径在上面代码中。 files = [File.from_path(str(uploaded_file_path))] with st.status('Thinking...', expanded=True, state='running') as status: # generate the response response = await session.generate_response( user_request, files=files ) # output to the user print("AI: ", response.content) full_response = response.content ### full_response = "this is full response" # for file in response.files: for i, file in enumerate(response.files): # await file.asave(f"/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/output{i}.png") ##working. # st.image(file.get_image()) #! working. # * 注意这里的设定,可以提高图片的精细程度。 st.image(file.get_image(), width=None, output_format='PNG') # message_placeholder.markdown(full_response + "▌") ## orignal code. # message_placeholder.markdown(full_response) ## orignal code. st.write(full_response) status.update(label='complete', state='complete') # TODO: 确认是否要记录所有的full response。 st.session_state.messages.append( {"role": "assistant", "content": full_response}) await session.astop() # ! 确认需要关闭。 # st.session_state.messages.append({"role": "assistant", "content": full_response}) # authentication with a local yaml file. # import yaml # from yaml.loader import SafeLoader # with open('/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/code_interpreter/config.yaml') as file: # config = yaml.load(file, Loader=SafeLoader) # authenticator = stauth.Authenticate( # config['credentials'], # config['cookie']['name'], # config['cookie']['key'], # config['cookie']['expiry_days'], # config['preauthorized'] # ) # authentication with a remove cloud-based database. # 导入云端用户数据库。 # DETA_KEY = "c0zegv33efm_4MBTaoQAn76GzUfsZeKV64Uh9qMY3WZb" # load_dotenv(".env") # DETA_KEY = os.getenv("DETA_KEY") # print(DETA_KEY) # deta = Deta(DETA_KEY) # mybase is the name of the database in Deta. You can change it to any name you want. credentials = {"usernames":{}} # credentials = {"users": {}} # db = db() users = [] email = [] passwords = [] names = [] for row in db.fetch_all_users(): # users.append(row["key"]) # names.append(row["username"]) users.append(row["username"]) email.append(row["email"]) names.append(row["key"]) passwords.append(row["password"]) hashed_passwords = stauth.Hasher(passwords).generate() ## 需要严格的按照yaml文件的格式来定义如下几个字段。 for un, name, pw in zip(users, names, hashed_passwords): # user_dict = {"name":name,"password":pw} user_dict = {"name": un, "password": pw} # credentials["usernames"].update({un:user_dict}) credentials["usernames"].update({un: user_dict}) # ## sign-up模块,未完成。 # database_table = [] # # print(pd.DataFrame(credentials)) # for i in credentials['usernames'].keys(): # # print("i:",i) # # print("name",credentials['usernames'][i]['name']) # # print("password",credentials['usernames'][i]['password']) # database_table.append([i,credentials['usernames'][i]['name'],credentials['usernames'][i]['password']]) # print("database_table:",database_table) authenticator = stauth.Authenticate( credentials=credentials, cookie_name="joeshi_gpt", key='abcedefg', cookie_expiry_days=30) user, authentication_status, username = authenticator.login('用户登录', 'main') # print("name", name, "username", username) # ## sign-up widget,未完成。 # try: # if authenticator.register_user('新用户注册', preauthorization=False): # # for list in database_table: # # db.update_user(username=list[0], name=list[1], password=list[2]) # db.update_user(username=list[-1][0], name=list[-1][1], password=list[-1][2]) # # st.success('User registered successfully') # st.success('注册成功!') # except Exception as e: # st.error(e) if authentication_status: with st.sidebar: st.markdown( """