import fitz # PyMuPDF from PIL import Image import os from itertools import islice from collections import namedtuple import pytesseract import argparse import imutils import cv2 import shutil import os import numpy as np import gradio as gr def align_images(image, template, maxFeatures=500, keepPercent=0.2,debug=False): # convert both the input image and template to grayscale imageGray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) templateGray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) orb = cv2.ORB_create(maxFeatures) (kpsA, descsA) = orb.detectAndCompute(imageGray, None) (kpsB, descsB) = orb.detectAndCompute(templateGray, None) # match the features method = cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING matcher = cv2.DescriptorMatcher_create(method) matches = matcher.match(descsA, descsB, None) matches = sorted(matches, key=lambda x:x.distance) # keep only the top matches keep = int(len(matches) * keepPercent) matches = matches[:keep] # check to see if we should visualize the matched keypoints if debug: matchedVis = cv2.drawMatches(image, kpsA, template, kpsB,matches, None) matchedVis = imutils.resize(matchedVis, width=1000) cv2_imshow(matchedVis) cv2.waitKey(0) # allocate memory for the keypoints (x, y)-coordinates from the # top matches -- we'll use these coordinates to compute our # homography matrix ptsA = np.zeros((len(matches), 2), dtype="float") ptsB = np.zeros((len(matches), 2), dtype="float") # loop over the top matches for (i, m) in enumerate(matches): # indicate that the two keypoints in the respective images # map to each other ptsA[i] = kpsA[m.queryIdx].pt ptsB[i] = kpsB[m.trainIdx].pt # compute the homography matrix between the two sets of matched # points (H, mask) = cv2.findHomography(ptsA, ptsB, method=cv2.RANSAC) # use the homography matrix to align the images (h, w) = template.shape[:2] aligned = cv2.warpPerspective(image, H, (w, h)) # return the aligned image return aligned def cleanup_text(text): return "".join([c if ord(c) < 128 else "" for c in text]).strip() def detectarCatastro(pdf): if pdf.endswith(".pdf"): images = [] pdf = fitz.open(pdf) # Iterar sobre cada página del PDF for page_num in range(len(pdf)): page = pdf.load_page(page_num) pix = page.get_pixmap() img_array = np.frombuffer(pix.samples, dtype=np.uint8) if pix.alpha: img_array = img_array.reshape((pix.height, pix.width, 4)) else: img_array = img_array.reshape((pix.height, pix.width, 3)) images.append(img_array) aligned_images = [] template = cv2.imread('alignImage1.png') aligned_image = align_images(images[0], template, debug=True) aligned_images.append(aligned_image) template = cv2.imread('alignImage2.png') aligned_image = align_images(images[1], template, debug=True) aligned_images.append(aligned_image) filtered_image = cv2.bilateralFilter(aligned_images[0], 9, 75, 75) alignedImage = filtered_image alignedImage = cv2.resize(alignedImage, None, fx=1, fy=1, interpolation=cv2.INTER_LINEAR) OCRLocation = namedtuple("OCRLocation", ["id", "bbox", "filter_keywords"]) OCR_LOCATIONS = [ OCRLocation("Numero de la parcela", (385, 33, 225, 20), ["numero", "de", "la", "parcela"]), ] mostrar = "Numero de la parcela: " for loc in OCR_LOCATIONS: (x, y, w, h) = loc.bbox roi = alignedImage[y:y + h, x:x + w] rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) text = pytesseract.image_to_string(rgb) mostrar = mostrar + text + " | Cultivos: " filtered_image = cv2.bilateralFilter(aligned_images[1], 9, 75, 75) alignedImage = filtered_image alignedImage = cv2.resize(alignedImage, None, fx=1, fy=1, interpolation=cv2.INTER_LINEAR) OCR_LOCATIONS = [ OCRLocation("Cultivos", (75, 58, 180, 190), ["cultivos", "y", "aprovechamientos"]), ] for loc in OCR_LOCATIONS: (x, y, w, h) = loc.bbox roi = alignedImage[y:y + h, x:x + w] rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) text = pytesseract.image_to_string(rgb) mostrar = mostrar + text return mostrar pdf = gr.File(label="Input PDF", value="ejemplo.pdf") method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR") output = gr.Textbox(label="Output") demo = gr.Interface( detectarCatastro, [pdf], output, title="DetectorCatastro", css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", article = """

Feel free to give us your thoughts on this demo and please contact us at letstalk@pragnakalp.com

Developed by: Pragnakalp Techlabs

""" ) demo.launch()