alokvtk commited on
Commit
fdf2375
·
1 Parent(s): 4c1b703

Delete chck.py

Browse files
Files changed (1) hide show
  1. chck.py +0 -80
chck.py DELETED
@@ -1,80 +0,0 @@
1
- import streamlit as st
2
- import numpy as np
3
- from PIL import Image
4
- from tensorflow.keras.models import load_model
5
- from tensorflow.keras.preprocessing.text import Tokenizer
6
- from tensorflow.keras.preprocessing.sequence import pad_sequences
7
- from tensorflow.keras.applications.inception_v3 import preprocess_input
8
- import tensorflow as tf
9
- import joblib
10
-
11
- # Load saved models
12
- image_model = load_model('tumor_detection_model.h5')
13
- dnn_model = load_model('sms_spam_detection_dnnmodel.h5')
14
- rnn_model = load_model('spam_detection_rnn_model.h5')
15
- perceptron_model = joblib.load('imdb_perceptron_model.pkl')
16
- backprop_model = joblib.load('backprop_model.pkl')
17
- LSTM_model = load_model('imdb_LSTM.h5')
18
-
19
- # Streamlit app
20
- st.title("Classification")
21
-
22
- # Sidebar
23
- task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"])
24
-
25
- def preprocess_message_dnn(message, tokeniser, max_length):
26
- encoded_message = tokeniser.texts_to_sequences([message])
27
- padded_message = pad_sequences(encoded_message, maxlen=max_length, padding='post')
28
- return padded_message
29
-
30
- def predict_dnnspam(message, tokeniser, max_length):
31
- processed_message = preprocess_message_dnn(message, tokeniser, max_length)
32
- prediction = dnn_model.predict(processed_message)
33
- return "Spam" if prediction >= 0.5 else "Ham"
34
-
35
- # Other prediction functions for sentiment analysis can follow a similar pattern
36
-
37
- # Function for CNN prediction
38
- def preprocess_image(image):
39
- image = image.resize((299, 299))
40
- image_array = np.array(image)
41
- preprocessed_image = preprocess_input(image_array)
42
- return preprocessed_image
43
-
44
- def make_prediction_cnn(image, model):
45
- img = image.resize((128, 128))
46
- img_array = np.array(img)
47
- img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
48
- preprocessed_image = preprocess_input(img_array)
49
- prediction = model.predict(preprocessed_image)
50
- return "Tumor Detected" if prediction > 0.5 else "No Tumor"
51
-
52
- if task == "Sentiment Classification":
53
- st.subheader("Choose Model")
54
- model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation", "LSTM"])
55
-
56
- st.subheader("Text Input")
57
- text_input = st.text_area("Enter Text")
58
-
59
- if st.button("Predict"):
60
- if model_choice == "DNN":
61
- # You need to define tokeniser and max_length for DNN model
62
- prediction_result = predict_dnnspam(text_input, tokeniser, max_length)
63
- st.write(f"The message is classified as: {prediction_result}")
64
- # Other model choices should call respective prediction functions similarly
65
-
66
- else:
67
- st.subheader("Choose Model")
68
- model_choice = st.radio("Select Model", ["CNN"])
69
-
70
- st.subheader("Image Input")
71
- image_input = st.file_uploader("Choose an image...", type="jpg")
72
-
73
- if image_input is not None:
74
- image = Image.open(image_input)
75
- st.image(image, caption="Uploaded Image.", use_column_width=True)
76
-
77
- if st.button("Predict"):
78
- if model_choice == "CNN":
79
- prediction_result = make_prediction_cnn(image, image_model)
80
- st.write(prediction_result)