Spaces:
Sleeping
Sleeping
alperugurcan
commited on
Create game_logic.py
Browse files- game_logic.py +188 -0
game_logic.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Configuration:
|
2 |
+
def __init__(self, config_dict):
|
3 |
+
self.rows = config_dict["rows"]
|
4 |
+
self.columns = config_dict["columns"]
|
5 |
+
self.inarow = config_dict["inarow"]
|
6 |
+
|
7 |
+
class Observation:
|
8 |
+
def __init__(self, obs_dict):
|
9 |
+
self.board = obs_dict["board"]
|
10 |
+
self.mark = obs_dict["mark"]
|
11 |
+
|
12 |
+
def my_agent(observation, configuration):
|
13 |
+
"""
|
14 |
+
ConnectX agent using Minimax algorithm with alpha-beta pruning
|
15 |
+
Args:
|
16 |
+
observation: Current game state
|
17 |
+
configuration: Game configuration
|
18 |
+
Returns:
|
19 |
+
Column number (0-based) where to drop the piece
|
20 |
+
"""
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
# Constants
|
24 |
+
EMPTY = 0
|
25 |
+
MAX_DEPTH = 6 # Search depth limit
|
26 |
+
INFINITY = float('inf')
|
27 |
+
|
28 |
+
def make_board(obs):
|
29 |
+
"""Convert observation to 2D numpy array"""
|
30 |
+
return np.asarray(obs.board).reshape(configuration.rows, configuration.columns)
|
31 |
+
|
32 |
+
def get_valid_moves(board):
|
33 |
+
"""Get list of valid moves (columns that aren't full)"""
|
34 |
+
return [col for col in range(configuration.columns) if board[0][col] == EMPTY]
|
35 |
+
|
36 |
+
def drop_piece(board, col, piece):
|
37 |
+
"""Drop piece in specified column and return row position"""
|
38 |
+
row = np.where(board[:, col] == EMPTY)[0][-1]
|
39 |
+
board[row, col] = piece
|
40 |
+
return row
|
41 |
+
|
42 |
+
def check_window(window, piece, inarow):
|
43 |
+
"""
|
44 |
+
Score a window of positions
|
45 |
+
Higher scores for more pieces in a row and potential winning moves
|
46 |
+
Negative scores for opponent's threatening positions
|
47 |
+
"""
|
48 |
+
score = 0
|
49 |
+
opp_piece = 1 if piece == 2 else 2
|
50 |
+
|
51 |
+
# Winning position
|
52 |
+
if np.count_nonzero(window == piece) == inarow:
|
53 |
+
score += 100
|
54 |
+
# One move away from winning
|
55 |
+
elif np.count_nonzero(window == piece) == (inarow - 1) and np.count_nonzero(window == EMPTY) == 1:
|
56 |
+
score += 10
|
57 |
+
# Two moves away from winning
|
58 |
+
elif np.count_nonzero(window == piece) == (inarow - 2) and np.count_nonzero(window == EMPTY) == 2:
|
59 |
+
score += 5
|
60 |
+
|
61 |
+
# Opponent one move away from winning - defensive move needed
|
62 |
+
if np.count_nonzero(window == opp_piece) == (inarow - 1) and np.count_nonzero(window == EMPTY) == 1:
|
63 |
+
score -= 80
|
64 |
+
|
65 |
+
return score
|
66 |
+
|
67 |
+
def score_position(board, piece):
|
68 |
+
"""
|
69 |
+
Score entire board position
|
70 |
+
Considers horizontal, vertical, and diagonal possibilities
|
71 |
+
Extra weight for center column control
|
72 |
+
"""
|
73 |
+
score = 0
|
74 |
+
|
75 |
+
# Horizontal windows
|
76 |
+
for row in range(configuration.rows):
|
77 |
+
for col in range(configuration.columns - (configuration.inarow - 1)):
|
78 |
+
window = board[row, col:col + configuration.inarow]
|
79 |
+
score += check_window(window, piece, configuration.inarow)
|
80 |
+
|
81 |
+
# Vertical windows
|
82 |
+
for row in range(configuration.rows - (configuration.inarow - 1)):
|
83 |
+
for col in range(configuration.columns):
|
84 |
+
window = board[row:row + configuration.inarow, col]
|
85 |
+
score += check_window(window, piece, configuration.inarow)
|
86 |
+
|
87 |
+
# Positive diagonal windows
|
88 |
+
for row in range(configuration.rows - (configuration.inarow - 1)):
|
89 |
+
for col in range(configuration.columns - (configuration.inarow - 1)):
|
90 |
+
window = [board[row + i][col + i] for i in range(configuration.inarow)]
|
91 |
+
score += check_window(window, piece, configuration.inarow)
|
92 |
+
|
93 |
+
# Negative diagonal windows
|
94 |
+
for row in range(configuration.inarow - 1, configuration.rows):
|
95 |
+
for col in range(configuration.columns - (configuration.inarow - 1)):
|
96 |
+
window = [board[row - i][col + i] for i in range(configuration.inarow)]
|
97 |
+
score += check_window(window, piece, configuration.inarow)
|
98 |
+
|
99 |
+
# Center column control bonus
|
100 |
+
center_array = board[:, configuration.columns//2]
|
101 |
+
center_count = np.count_nonzero(center_array == piece)
|
102 |
+
score += center_count * 6
|
103 |
+
|
104 |
+
return score
|
105 |
+
|
106 |
+
def is_terminal_node(board):
|
107 |
+
"""Check if current position is terminal (game over)"""
|
108 |
+
# Check horizontal wins
|
109 |
+
for row in range(configuration.rows):
|
110 |
+
for col in range(configuration.columns - (configuration.inarow - 1)):
|
111 |
+
window = list(board[row, col:col + configuration.inarow])
|
112 |
+
if window.count(1) == configuration.inarow or window.count(2) == configuration.inarow:
|
113 |
+
return True
|
114 |
+
|
115 |
+
# Check vertical wins
|
116 |
+
for row in range(configuration.rows - (configuration.inarow - 1)):
|
117 |
+
for col in range(configuration.columns):
|
118 |
+
window = list(board[row:row + configuration.inarow, col])
|
119 |
+
if window.count(1) == configuration.inarow or window.count(2) == configuration.inarow:
|
120 |
+
return True
|
121 |
+
|
122 |
+
# Check if board is full
|
123 |
+
return len(get_valid_moves(board)) == 0
|
124 |
+
|
125 |
+
def minimax(board, depth, alpha, beta, maximizing_player):
|
126 |
+
"""
|
127 |
+
Minimax algorithm with alpha-beta pruning
|
128 |
+
Returns best move and its score
|
129 |
+
"""
|
130 |
+
valid_moves = get_valid_moves(board)
|
131 |
+
is_terminal = is_terminal_node(board)
|
132 |
+
|
133 |
+
# Base cases: max depth reached or terminal position
|
134 |
+
if depth == 0 or is_terminal:
|
135 |
+
if is_terminal:
|
136 |
+
return (None, -INFINITY if maximizing_player else INFINITY)
|
137 |
+
else:
|
138 |
+
return (None, score_position(board, observation.mark))
|
139 |
+
|
140 |
+
if maximizing_player:
|
141 |
+
value = -INFINITY
|
142 |
+
column = np.random.choice(valid_moves)
|
143 |
+
for col in valid_moves:
|
144 |
+
board_copy = board.copy()
|
145 |
+
drop_piece(board_copy, col, observation.mark)
|
146 |
+
new_score = minimax(board_copy, depth-1, alpha, beta, False)[1]
|
147 |
+
if new_score > value:
|
148 |
+
value = new_score
|
149 |
+
column = col
|
150 |
+
alpha = max(alpha, value)
|
151 |
+
if alpha >= beta:
|
152 |
+
break
|
153 |
+
return column, value
|
154 |
+
|
155 |
+
else:
|
156 |
+
value = INFINITY
|
157 |
+
column = np.random.choice(valid_moves)
|
158 |
+
opponent_piece = 1 if observation.mark == 2 else 2
|
159 |
+
for col in valid_moves:
|
160 |
+
board_copy = board.copy()
|
161 |
+
drop_piece(board_copy, col, opponent_piece)
|
162 |
+
new_score = minimax(board_copy, depth-1, alpha, beta, True)[1]
|
163 |
+
if new_score < value:
|
164 |
+
value = new_score
|
165 |
+
column = col
|
166 |
+
beta = min(beta, value)
|
167 |
+
if alpha >= beta:
|
168 |
+
break
|
169 |
+
return column, value
|
170 |
+
|
171 |
+
# Main game logic
|
172 |
+
board = make_board(observation)
|
173 |
+
valid_moves = get_valid_moves(board)
|
174 |
+
|
175 |
+
# First move: take center column
|
176 |
+
if len(np.where(board != 0)[0]) == 0:
|
177 |
+
return configuration.columns // 2
|
178 |
+
|
179 |
+
# Check for immediate winning moves
|
180 |
+
for col in valid_moves:
|
181 |
+
board_copy = board.copy()
|
182 |
+
drop_piece(board_copy, col, observation.mark)
|
183 |
+
if is_terminal_node(board_copy):
|
184 |
+
return col
|
185 |
+
|
186 |
+
# Use minimax to find best move
|
187 |
+
column, minimax_score = minimax(board, MAX_DEPTH, -INFINITY, INFINITY, True)
|
188 |
+
return column
|