Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.ensemble import RandomForestRegressor | |
import joblib | |
st.title('Restaurant Revenue Predictor') | |
# Create input form | |
st.write('Enter restaurant details:') | |
# City selection | |
city = st.selectbox('City', ['Istanbul', 'Ankara', 'Izmir', 'Other Cities']) | |
# Adding description for Type | |
st.write(""" | |
**Type**: Type of the restaurant | |
- FC: Food Court | |
- IL: Inline | |
- DT: Drive Thru | |
- MB: Mobile | |
""") | |
type = st.selectbox('Type', ['FC', 'IL', 'DT', 'MB']) | |
# Create a simple model for demonstration | |
def create_model(): | |
model = RandomForestRegressor( | |
n_estimators=100, | |
max_depth=10, | |
random_state=42 | |
) | |
# Create some sample training data | |
X_train = pd.DataFrame({ | |
'City Group_Big Cities': [1, 0, 1, 0], | |
'City Group_Other': [0, 1, 0, 1], | |
'Type_DT': [1, 0, 0, 0], | |
'Type_FC': [0, 1, 0, 0], | |
'Type_IL': [0, 0, 1, 0], | |
'Type_MB': [0, 0, 0, 1], | |
'days': [1000, 800, 600, 400] | |
}) | |
y_train = np.array([1500000, 1000000, 800000, 500000]) | |
model.fit(X_train, y_train) | |
return model | |
if st.button('Predict Revenue'): | |
# Map city to City Group | |
city_group = 'Big Cities' if city in ['Istanbul', 'Ankara', 'Izmir'] else 'Other' | |
# Create input dataframe | |
input_data = pd.DataFrame({ | |
'City Group_Big Cities': [1 if city_group == 'Big Cities' else 0], | |
'City Group_Other': [1 if city_group == 'Other' else 0], | |
'Type_DT': [1 if type == 'DT' else 0], | |
'Type_FC': [1 if type == 'FC' else 0], | |
'Type_IL': [1 if type == 'IL' else 0], | |
'Type_MB': [1 if type == 'MB' else 0], | |
'days': [500] # default value | |
}) | |
try: | |
# Get model | |
model = create_model() | |
# Make prediction | |
prediction = model.predict(input_data)[0] | |
# Format prediction | |
formatted_prediction = f"${prediction:,.2f}" | |
# Display prediction with additional context | |
st.success(f'Predicted Revenue: {formatted_prediction}') | |
# Add some context about the prediction | |
st.info(""" | |
Note: This is a simplified model for demonstration purposes. | |
The prediction is based on limited training data and should be used as a rough estimate only. | |
""") | |
except Exception as e: | |
st.error(f"Error making prediction: {str(e)}") |