Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
from catboost import CatBoostClassifier
|
4 |
import joblib
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
X = train_df.drop('ACTION', axis=1)
|
9 |
-
y = train_df['ACTION']
|
10 |
-
|
11 |
-
# Train and save model
|
12 |
-
def train_and_save_model():
|
13 |
-
model = CatBoostClassifier(
|
14 |
-
iterations=100,
|
15 |
-
learning_rate=0.1,
|
16 |
-
depth=6,
|
17 |
-
verbose=0,
|
18 |
-
task_type='CPU',
|
19 |
-
bootstrap_type='Bernoulli',
|
20 |
-
subsample=0.8,
|
21 |
-
eval_metric='Accuracy',
|
22 |
-
early_stopping_rounds=20
|
23 |
-
)
|
24 |
-
model.fit(X, y)
|
25 |
-
joblib.dump(model, 'amazon_access_model.joblib', compress=3)
|
26 |
-
return model
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
'ROLE_ROLLUP_1': train_df['ROLE_ROLLUP_1'].mode()[0],
|
31 |
-
'ROLE_ROLLUP_2': train_df['ROLE_ROLLUP_2'].mode()[0],
|
32 |
-
'ROLE_DEPTNAME': train_df['ROLE_DEPTNAME'].mode()[0],
|
33 |
-
'ROLE_FAMILY_DESC': train_df['ROLE_FAMILY_DESC'].mode()[0],
|
34 |
-
'ROLE_FAMILY': train_df['ROLE_FAMILY'].mode()[0],
|
35 |
-
'ROLE_CODE': train_df['ROLE_CODE'].mode()[0]
|
36 |
-
}
|
37 |
-
|
38 |
-
# Load or train model
|
39 |
-
try:
|
40 |
-
model = joblib.load('amazon_access_model.joblib')
|
41 |
-
except:
|
42 |
-
model = train_and_save_model()
|
43 |
|
44 |
def predict_access(resource, mgr_id, role_title):
|
|
|
45 |
input_data = pd.DataFrame([[
|
46 |
resource,
|
47 |
mgr_id,
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
role_title,
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
]], columns=
|
56 |
|
57 |
prediction = model.predict(input_data)[0]
|
58 |
confidence = model.predict_proba(input_data)[0][prediction]
|
@@ -60,32 +28,17 @@ def predict_access(resource, mgr_id, role_title):
|
|
60 |
result = "β
Access Granted" if prediction == 1 else "β Access Denied"
|
61 |
return f"{result} (Confidence: {confidence:.2%})"
|
62 |
|
63 |
-
#
|
64 |
iface = gr.Interface(
|
65 |
fn=predict_access,
|
66 |
inputs=[
|
67 |
-
gr.Dropdown(
|
68 |
-
|
69 |
-
|
70 |
-
),
|
71 |
-
gr.Dropdown(
|
72 |
-
choices=sorted(train_df['MGR_ID'].unique().tolist())[:100], # Limit choices
|
73 |
-
label="Manager"
|
74 |
-
),
|
75 |
-
gr.Dropdown(
|
76 |
-
choices=sorted(train_df['ROLE_TITLE'].unique().tolist()),
|
77 |
-
label="Role Title"
|
78 |
-
)
|
79 |
],
|
80 |
outputs=gr.Text(label="Access Decision"),
|
81 |
title="Amazon Access Control",
|
82 |
-
|
83 |
-
theme="soft",
|
84 |
-
examples=[
|
85 |
-
[train_df['RESOURCE'].iloc[0], train_df['MGR_ID'].iloc[0], train_df['ROLE_TITLE'].iloc[0]],
|
86 |
-
[train_df['RESOURCE'].iloc[1], train_df['MGR_ID'].iloc[1], train_df['ROLE_TITLE'].iloc[1]]
|
87 |
-
]
|
88 |
)
|
89 |
|
90 |
-
|
91 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
import joblib
|
4 |
|
5 |
+
# Load the saved model
|
6 |
+
model = joblib.load('amazon_access_model.joblib')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load minimal data just for dropdowns
|
9 |
+
train_df = pd.read_csv('/kaggle/input/amazon-employee-access-challenge/train.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def predict_access(resource, mgr_id, role_title):
|
12 |
+
# Common values for other fields
|
13 |
input_data = pd.DataFrame([[
|
14 |
resource,
|
15 |
mgr_id,
|
16 |
+
train_df['ROLE_ROLLUP_1'].mode()[0],
|
17 |
+
train_df['ROLE_ROLLUP_2'].mode()[0],
|
18 |
+
train_df['ROLE_DEPTNAME'].mode()[0],
|
19 |
role_title,
|
20 |
+
train_df['ROLE_FAMILY_DESC'].mode()[0],
|
21 |
+
train_df['ROLE_FAMILY'].mode()[0],
|
22 |
+
train_df['ROLE_CODE'].mode()[0]
|
23 |
+
]], columns=train_df.columns[1:]) # Exclude ACTION column
|
24 |
|
25 |
prediction = model.predict(input_data)[0]
|
26 |
confidence = model.predict_proba(input_data)[0][prediction]
|
|
|
28 |
result = "β
Access Granted" if prediction == 1 else "β Access Denied"
|
29 |
return f"{result} (Confidence: {confidence:.2%})"
|
30 |
|
31 |
+
# Simple interface
|
32 |
iface = gr.Interface(
|
33 |
fn=predict_access,
|
34 |
inputs=[
|
35 |
+
gr.Dropdown(choices=sorted(train_df['RESOURCE'].unique().tolist())[:100], label="Resource"),
|
36 |
+
gr.Dropdown(choices=sorted(train_df['MGR_ID'].unique().tolist())[:100], label="Manager"),
|
37 |
+
gr.Dropdown(choices=sorted(train_df['ROLE_TITLE'].unique().tolist()), label="Role Title")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
],
|
39 |
outputs=gr.Text(label="Access Decision"),
|
40 |
title="Amazon Access Control",
|
41 |
+
theme="soft"
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
+
iface.launch()
|
|