Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.losses import MeanSquaredError | |
import joblib | |
def load_resources(): | |
custom_objects = { | |
'mse': MeanSquaredError() | |
} | |
model = load_model('bike_model.h5', custom_objects=custom_objects) | |
scaler_x = joblib.load('scaler_x.pkl') | |
scaler_y = joblib.load('scaler_y.pkl') | |
features = np.load('feature_names.npy', allow_pickle=True) | |
return model, scaler_x, scaler_y, features | |
st.title('🚲 Bike Sharing Demand Predictor') | |
st.write('Predict hourly bike rental demand based on weather conditions and time features.') | |
try: | |
model, scaler_x, scaler_y, feature_names = load_resources() | |
col1, col2 = st.columns(2) | |
with col1: | |
# Categorical inputs | |
season = st.selectbox('season', options=[1, 2, 3, 4], | |
help='1:Spring, 2:Summer, 3:Fall, 4:Winter') | |
holiday = st.selectbox('holiday', options=[0, 1], | |
help='0:No, 1:Yes') | |
workingday = st.selectbox('workingday', options=[0, 1], | |
help='0:No, 1:Yes') | |
weather = st.selectbox('weather', options=[1, 2, 3, 4], | |
help='1:Clear, 2:Mist, 3:Light Rain/Snow, 4:Heavy Rain') | |
with col2: | |
# Continuous inputs with sliders | |
temp = st.slider('temp (°C)', min_value=0.82, max_value=41.0, | |
value=20.0, step=0.1) | |
atemp = st.slider('feels like temp', min_value=0.76, max_value=45.5, | |
value=23.7, step=0.1) | |
humidity = st.slider('humidity (%)', min_value=0, max_value=100, | |
value=62) | |
windspeed = st.slider('windspeed', min_value=0.0, max_value=57.0, | |
value=13.0, step=0.1) | |
# Create input dictionary | |
inputs = { | |
'season': season, | |
'holiday': holiday, | |
'workingday': workingday, | |
'weather': weather, | |
'temp': temp, | |
'atemp': atemp, | |
'humidity': humidity, | |
'windspeed': windspeed | |
} | |
if st.button('Predict Demand', use_container_width=True): | |
x = scaler_x.transform(np.array(list(inputs.values())).reshape(1, -1)) | |
x = x.reshape(1, 1, x.shape[1]) | |
pred_scaled = model.predict(x, verbose=0) | |
pred = scaler_y.inverse_transform(pred_scaled)[0][0] | |
st.success(f'Predicted demand: {max(0, int(pred))} bikes') | |
except Exception as e: | |
st.error(f'Error: {str(e)}') | |
st.markdown('---') | |
st.markdown(""" | |
### Feature Information: | |
- **season**: 1=Spring, 2=Summer, 3=Fall, 4=Winter | |
- **holiday**: 0=No, 1=Yes | |
- **workingday**: 0=No, 1=Yes | |
- **weather**: 1=Clear, 2=Mist, 3=Light Rain/Snow, 4=Heavy Rain | |
- **temp**: Temperature in Celsius (0.82°C to 41°C) | |
- **atemp**: "Feels like" temperature (0.76°C to 45.5°C) | |
- **humidity**: Relative humidity (0% to 100%) | |
- **windspeed**: Wind speed (0 to 57) | |
""") | |
st.markdown('Made with ❤️ using Streamlit and TensorFlow') |