crime-predictor / app.py
alperugurcan's picture
Create app.py
807bfae verified
import streamlit as st
import pandas as pd
import numpy as np
from catboost import CatBoostClassifier
# Load the trained model
@st.cache_resource
def load_model():
model = CatBoostClassifier()
model.load_model('model.cbm') # Ensure you have saved your model as 'model.cbm'
return model
def main():
st.title('San Francisco Crime Predictor')
# Input form
st.sidebar.header('Input Parameters')
hour = st.sidebar.slider('Hour of Day', 0, 23, 12)
month = st.sidebar.slider('Month', 1, 12, 6)
day_of_week = st.sidebar.selectbox('Day of Week',
['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'])
pd_district = st.sidebar.selectbox('Police District',
['NORTHERN', 'SOUTHERN', 'MISSION', 'CENTRAL',
'PARK', 'RICHMOND', 'TARAVAL', 'INGLESIDE',
'BAYVIEW', 'TENDERLOIN'])
x = st.sidebar.number_input('Longitude', value=-122.42)
y = st.sidebar.number_input('Latitude', value=37.77)
# Encode categorical inputs
day_of_week_encoded = pd.Categorical([day_of_week], categories=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']).codes[0]
pd_district_encoded = pd.Categorical([pd_district], categories=['NORTHERN', 'SOUTHERN', 'MISSION', 'CENTRAL', 'PARK', 'RICHMOND', 'TARAVAL', 'INGLESIDE', 'BAYVIEW', 'TENDERLOIN']).codes[0]
# Make prediction
if st.button('Predict Crime Category'):
model = load_model()
input_data = np.array([[hour, month, day_of_week_encoded, pd_district_encoded, x, y]])
prediction = model.predict(input_data)
st.write(f'Predicted Crime Category: {prediction[0]}')
if __name__ == '__main__':
main()