import streamlit as st import pandas as pd import numpy as np from catboost import CatBoostClassifier # Load the trained model @st.cache_resource def load_model(): model = CatBoostClassifier() model.load_model('model.cbm') # Ensure you have saved your model as 'model.cbm' return model def main(): st.title('San Francisco Crime Predictor') # Input form st.sidebar.header('Input Parameters') hour = st.sidebar.slider('Hour of Day', 0, 23, 12) month = st.sidebar.slider('Month', 1, 12, 6) day_of_week = st.sidebar.selectbox('Day of Week', ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']) pd_district = st.sidebar.selectbox('Police District', ['NORTHERN', 'SOUTHERN', 'MISSION', 'CENTRAL', 'PARK', 'RICHMOND', 'TARAVAL', 'INGLESIDE', 'BAYVIEW', 'TENDERLOIN']) x = st.sidebar.number_input('Longitude', value=-122.42) y = st.sidebar.number_input('Latitude', value=37.77) # Encode categorical inputs day_of_week_encoded = pd.Categorical([day_of_week], categories=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']).codes[0] pd_district_encoded = pd.Categorical([pd_district], categories=['NORTHERN', 'SOUTHERN', 'MISSION', 'CENTRAL', 'PARK', 'RICHMOND', 'TARAVAL', 'INGLESIDE', 'BAYVIEW', 'TENDERLOIN']).codes[0] # Make prediction if st.button('Predict Crime Category'): model = load_model() input_data = np.array([[hour, month, day_of_week_encoded, pd_district_encoded, x, y]]) prediction = model.predict(input_data) st.write(f'Predicted Crime Category: {prediction[0]}') if __name__ == '__main__': main()