Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,7 @@ import gradio as gr
|
|
2 |
from deepface import DeepFace
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
-
import base64
|
6 |
|
7 |
-
# Function to encode images in base64
|
8 |
-
def encode_image(image_path):
|
9 |
-
with open(image_path, "rb") as image_file:
|
10 |
-
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
11 |
-
return f"data:image/jpeg;base64,{encoded_string}"
|
12 |
-
|
13 |
-
# Example images as base64 strings (You need to download the images first)
|
14 |
-
example_image_1 = encode_image("e.jpeg") # Replace with your local image path
|
15 |
-
example_image_2 = encode_image("k.jpeg") # Replace with your local image path
|
16 |
-
|
17 |
-
# Analyze the uploaded image
|
18 |
def analyze_face(image):
|
19 |
analysis_result = DeepFace.analyze(img_path=np.array(image), actions=['age', 'gender', 'race', 'emotion'])[0]
|
20 |
|
@@ -24,12 +12,10 @@ def analyze_face(image):
|
|
24 |
race = analysis_result['dominant_race']
|
25 |
emotion = analysis_result['dominant_emotion']
|
26 |
|
27 |
-
# Format emotion breakdown as a string
|
28 |
emotions_detail = ', '.join([f"{k}: {v:.2f}%" for k, v in analysis_result['emotion'].items()])
|
29 |
|
30 |
return age, f"{gender} ({gender_prob})", race, emotion, emotions_detail
|
31 |
|
32 |
-
# Define the Gradio interface
|
33 |
iface = gr.Interface(
|
34 |
fn=analyze_face,
|
35 |
inputs=gr.Image(type="pil"),
|
@@ -37,9 +23,7 @@ iface = gr.Interface(
|
|
37 |
gr.Text(label="Gender Probability"),
|
38 |
gr.Text(label="Race"),
|
39 |
gr.Text(label="Dominant Emotion"),
|
40 |
-
gr.Text(label="Emotion Breakdown")]
|
41 |
-
examples=[[example_image_1], [example_image_2]] # Adding example images
|
42 |
)
|
43 |
|
44 |
-
# Launch the Gradio app
|
45 |
iface.launch()
|
|
|
2 |
from deepface import DeepFace
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def analyze_face(image):
|
7 |
analysis_result = DeepFace.analyze(img_path=np.array(image), actions=['age', 'gender', 'race', 'emotion'])[0]
|
8 |
|
|
|
12 |
race = analysis_result['dominant_race']
|
13 |
emotion = analysis_result['dominant_emotion']
|
14 |
|
|
|
15 |
emotions_detail = ', '.join([f"{k}: {v:.2f}%" for k, v in analysis_result['emotion'].items()])
|
16 |
|
17 |
return age, f"{gender} ({gender_prob})", race, emotion, emotions_detail
|
18 |
|
|
|
19 |
iface = gr.Interface(
|
20 |
fn=analyze_face,
|
21 |
inputs=gr.Image(type="pil"),
|
|
|
23 |
gr.Text(label="Gender Probability"),
|
24 |
gr.Text(label="Race"),
|
25 |
gr.Text(label="Dominant Emotion"),
|
26 |
+
gr.Text(label="Emotion Breakdown")]
|
|
|
27 |
)
|
28 |
|
|
|
29 |
iface.launch()
|