Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import joblib
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
model = joblib.load('forest_model.joblib')
|
7 |
+
|
8 |
+
def predict(elevation, horizontal_distance_to_roadways, horizontal_distance_to_fire_points,
|
9 |
+
horizontal_distance_to_hydrology, vertical_distance_to_hydrology):
|
10 |
+
|
11 |
+
# Create a DataFrame with all features (initialized to 0)
|
12 |
+
input_data = pd.DataFrame(0, index=[0], columns=model.feature_names_in_)
|
13 |
+
|
14 |
+
# Set the values for our important features
|
15 |
+
feature_values = {
|
16 |
+
'Elevation': elevation,
|
17 |
+
'Horizontal_Distance_To_Roadways': horizontal_distance_to_roadways,
|
18 |
+
'Horizontal_Distance_To_Fire_Points': horizontal_distance_to_fire_points,
|
19 |
+
'Horizontal_Distance_To_Hydrology': horizontal_distance_to_hydrology,
|
20 |
+
'Vertical_Distance_To_Hydrology': vertical_distance_to_hydrology
|
21 |
+
}
|
22 |
+
|
23 |
+
for feature, value in feature_values.items():
|
24 |
+
input_data[feature] = value
|
25 |
+
|
26 |
+
# Make prediction
|
27 |
+
prediction = model.predict(input_data)[0]
|
28 |
+
|
29 |
+
forest_types = {
|
30 |
+
1: "Spruce/Fir",
|
31 |
+
2: "Lodgepole Pine",
|
32 |
+
3: "Ponderosa Pine",
|
33 |
+
4: "Cottonwood/Willow",
|
34 |
+
5: "Aspen",
|
35 |
+
6: "Douglas-fir",
|
36 |
+
7: "Krummholz"
|
37 |
+
}
|
38 |
+
|
39 |
+
return forest_types[prediction]
|
40 |
+
|
41 |
+
# Create Gradio interface
|
42 |
+
inputs = [
|
43 |
+
gr.Number(label="Elevation (meters)", minimum=1800, maximum=4000),
|
44 |
+
gr.Number(label="Distance to Roadways (meters)", minimum=0, maximum=8000),
|
45 |
+
gr.Number(label="Distance to Fire Points (meters)", minimum=0, maximum=8000),
|
46 |
+
gr.Number(label="Distance to Hydrology (meters)", minimum=0, maximum=1000),
|
47 |
+
gr.Number(label="Vertical Distance to Hydrology (meters)", minimum=-500, maximum=500)
|
48 |
+
]
|
49 |
+
|
50 |
+
output = gr.Text(label="Predicted Forest Cover Type")
|
51 |
+
|
52 |
+
interface = gr.Interface(
|
53 |
+
fn=predict,
|
54 |
+
inputs=inputs,
|
55 |
+
outputs=output,
|
56 |
+
title="Forest Cover Type Prediction",
|
57 |
+
description="Predict forest cover type using the most important environmental features.",
|
58 |
+
examples=[
|
59 |
+
[2596, 510, 6279, 258, 0] # Sample values for the top 5 features
|
60 |
+
]
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
interface.launch()
|