Spaces:
Sleeping
Sleeping
File size: 5,806 Bytes
ab484fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import json
import requests
from huggingface_hub import hf_hub_download
# Model Architecture
class IcebergClassifier(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(2, 16, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc = nn.Sequential(
nn.Linear(64 * 9 * 9, 64),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(64, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
return self.fc(x)
# Model loading with HuggingFace Hub
@st.cache_resource
def load_model():
try:
# Download the model from HuggingFace Hub
model_path = hf_hub_download(
repo_id="alperugurcan/iceberg",
filename="best_iceberg_model.pth"
)
model = IcebergClassifier()
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval()
return model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
def predict(band1, band2):
model = load_model()
if model is None:
return None
try:
# Transform images to model input format
band1 = np.array(band1).reshape(75, 75)
band2 = np.array(band2).reshape(75, 75)
image = np.stack([band1, band2])
image = torch.FloatTensor(image).unsqueeze(0)
# Prediction
with torch.no_grad():
pred = model(image)
return pred.item()
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
return None
# Streamlit UI
def main():
st.title('π§ Iceberg vs Ship Classifier')
st.write("""
This application uses satellite radar data to predict whether an image shows an iceberg or a ship.
The model uses two radar bands (HH and HV polarization) to make its prediction.
""")
# Sidebar with information
st.sidebar.header("About")
st.sidebar.info("""
This model was trained on the Statoil/C-CORE Iceberg Classifier Challenge dataset.
It uses radar data from two different polarizations to distinguish between ships and icebergs.
""")
st.sidebar.header("Input Format")
st.sidebar.info("""
Each band should be a 75x75 array of radar backscatter values in dB.
Values are typically between -50 and 50.
""")
# Main content
st.subheader('Radar Image Data')
col1, col2 = st.columns(2)
with col1:
band1_text = st.text_area('Band 1 (HH Polarization)', height=150,
help='Enter 75x75 array in JSON format')
with col2:
band2_text = st.text_area('Band 2 (HV Polarization)', height=150,
help='Enter 75x75 array in JSON format')
if st.button('π Predict'):
if not band1_text or not band2_text:
st.warning('Please enter data for both bands')
return
try:
# Parse JSON data
band1_data = json.loads(band1_text)
band2_data = json.loads(band2_text)
# Validate array dimensions
if (len(band1_data) != 75 or len(band1_data[0]) != 75 or
len(band2_data) != 75 or len(band2_data[0]) != 75):
st.error('Arrays must be 75x75 dimensions')
return
# Make prediction
with st.spinner('Making prediction...'):
probability = predict(band1_data, band2_data)
if probability is not None:
# Show results
st.subheader('Prediction Result')
# Create columns for the result display
result_col1, result_col2 = st.columns(2)
with result_col1:
st.metric("Iceberg Probability", f"{probability:.2%}")
with result_col2:
if probability > 0.5:
st.success('π§ ICEBERG')
else:
st.success('π’ SHIP')
# Progress bar
st.progress(probability)
# Confidence message
confidence = abs(probability - 0.5) * 2
if confidence > 0.8:
st.write("High confidence prediction")
elif confidence > 0.4:
st.write("Medium confidence prediction")
else:
st.write("Low confidence prediction")
except json.JSONDecodeError:
st.error('Please enter valid JSON format data')
except Exception as e:
st.error(f'An error occurred: {str(e)}')
# Example usage
with st.expander("See example input"):
st.code('''
# Example data format for each band:
[
[-32.5, -31.2, -30.8, ...], # 75 values
[-31.8, -30.9, -31.1, ...], # 75 values
... # 75 rows total
]
''')
# Footer
st.markdown('---')
st.markdown("""
<div style='text-align: center'>
<p>Made with β€οΈ using Streamlit |
<a href='https://huggingface.co/alperugurcan/iceberg'>Model on HuggingFace</a></p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |