import streamlit as st import torch import torch.nn as nn import numpy as np from huggingface_hub import hf_hub_download class IcebergClassifier(nn.Module): def __init__(self): super().__init__() self.conv = nn.Sequential( nn.Conv2d(2, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2) ) self.fc = nn.Sequential( nn.Linear(64 * 9 * 9, 64), nn.ReLU(), nn.Dropout(0.5), nn.Linear(64, 1), nn.Sigmoid() ) def forward(self, x): return self.fc(self.conv(x).view(x.size(0), -1)) @st.cache_resource def load_model(): model = IcebergClassifier().eval() model.load_state_dict(torch.load(hf_hub_download("alperugurcan/iceberg","best_iceberg_model.pth"), map_location='cpu')) return model st.title('🧊 Simple Ship vs Iceberg Detector') # Simple numeric inputs band1 = st.number_input('Enter Band 1 value (-40 to -20)', -40.0, -20.0, -30.0) band2 = st.number_input('Enter Band 2 value (-35 to -15)', -35.0, -15.0, -25.0) if st.button('Detect'): try: # Create simple 75x75 arrays with the input values b1 = np.full((75,75), band1) b2 = np.full((75,75), band2) # Prepare input tensor x = torch.FloatTensor(np.stack([b1,b2])).unsqueeze(0) # Get prediction model = load_model() with torch.no_grad(): pred = model(x).item() # Show result result = "🧊 ICEBERG" if pred > 0.5 else "🚢 SHIP" st.success(f"{result} ({pred:.1%})") except Exception as e: st.error(f'Error: {str(e)}')