Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,48 +3,33 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
6 |
-
# Load model and tokenizer
|
7 |
model_name = "alperugurcan/nlp-disaster"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
|
11 |
def clean_text(text):
|
12 |
-
|
13 |
-
text = re.sub(r'http\S+|[^\w\s]', '', text)
|
14 |
-
return text.strip()
|
15 |
|
16 |
def predict(text):
|
17 |
if not text or len(text.strip()) == 0:
|
18 |
return "Please enter some text"
|
19 |
|
20 |
try:
|
21 |
-
# Preprocess text
|
22 |
text = clean_text(text)
|
|
|
23 |
|
24 |
-
# Tokenize the input text
|
25 |
-
inputs = tokenizer(
|
26 |
-
text,
|
27 |
-
return_tensors="pt",
|
28 |
-
truncation=True,
|
29 |
-
padding=True,
|
30 |
-
max_length=128
|
31 |
-
)
|
32 |
-
|
33 |
-
# Get model predictions
|
34 |
with torch.no_grad():
|
35 |
outputs = model(**inputs)
|
36 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
37 |
prediction = torch.argmax(outputs.logits, dim=-1)
|
38 |
confidence = probabilities[0][prediction.item()].item()
|
39 |
-
|
40 |
-
# Return result with confidence
|
41 |
result = "Disaster" if prediction.item() == 1 else "Not Disaster"
|
42 |
return f"{result} (Confidence: {confidence:.2%})"
|
43 |
|
44 |
except Exception as e:
|
45 |
return f"Error in prediction: {str(e)}"
|
46 |
|
47 |
-
# Create a Gradio interface with improved styling
|
48 |
iface = gr.Interface(
|
49 |
fn=predict,
|
50 |
inputs=gr.Textbox(
|
@@ -67,5 +52,4 @@ iface = gr.Interface(
|
|
67 |
)
|
68 |
)
|
69 |
|
70 |
-
# Launch with share=True for public URL
|
71 |
iface.launch(share=True)
|
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
|
|
6 |
model_name = "alperugurcan/nlp-disaster"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
|
10 |
def clean_text(text):
|
11 |
+
return re.sub(r'http\S+|[^\w\s]', '', text).strip()
|
|
|
|
|
12 |
|
13 |
def predict(text):
|
14 |
if not text or len(text.strip()) == 0:
|
15 |
return "Please enter some text"
|
16 |
|
17 |
try:
|
|
|
18 |
text = clean_text(text)
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
23 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
24 |
prediction = torch.argmax(outputs.logits, dim=-1)
|
25 |
confidence = probabilities[0][prediction.item()].item()
|
26 |
+
|
|
|
27 |
result = "Disaster" if prediction.item() == 1 else "Not Disaster"
|
28 |
return f"{result} (Confidence: {confidence:.2%})"
|
29 |
|
30 |
except Exception as e:
|
31 |
return f"Error in prediction: {str(e)}"
|
32 |
|
|
|
33 |
iface = gr.Interface(
|
34 |
fn=predict,
|
35 |
inputs=gr.Textbox(
|
|
|
52 |
)
|
53 |
)
|
54 |
|
|
|
55 |
iface.launch(share=True)
|