Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import pickle | |
import numpy as np | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
# Load the model and tokenizer | |
model = tf.keras.models.load_model('sentiment_model.keras') | |
with open('tokenizer.pickle', 'rb') as handle: | |
tokenizer = pickle.load(handle) | |
with open('max_length.txt', 'r') as f: | |
max_length = int(f.read()) | |
def classify_sentence(sentence): | |
seq = tokenizer.texts_to_sequences([sentence]) | |
padded_seq = pad_sequences(seq, maxlen=max_length) | |
prediction = model.predict(padded_seq) | |
label = "Positive" if prediction[0][0] > 0.5 else "Negative" | |
return label | |
# Streamlit UI | |
st.title("Restaurant Review Sentiment Analysis") | |
st.write("Enter your review in Turkish to analyze its sentiment") | |
user_input = st.text_area("Enter your review:") | |
if st.button("Analyze"): | |
if user_input: | |
result = classify_sentence(user_input) | |
st.write(f"Sentiment: {result}") | |
else: | |
st.write("Please enter a review to analyze") |