|
|
|
import gradio as gr |
|
import pandas as pd |
|
from xgboost import XGBClassifier |
|
import pickle |
|
|
|
|
|
model = pickle.load(open('xgboost_model.pkl', 'rb')) |
|
|
|
def predict_defects(loc, complexity, operators, operands, comments): |
|
""" |
|
Simplified prediction using only key metrics |
|
""" |
|
|
|
input_data = pd.DataFrame([[ |
|
loc, |
|
complexity, |
|
complexity, |
|
complexity, |
|
operators + operands, |
|
operators * operands, |
|
0.5, |
|
2.0, |
|
100, |
|
200, |
|
0.2, |
|
30, |
|
loc, |
|
comments, |
|
loc * 0.1, |
|
comments, |
|
operators, |
|
operands, |
|
operators * 2, |
|
operands * 2, |
|
complexity |
|
]], columns=['loc', 'v(g)', 'ev(g)', 'iv(g)', 'n', 'v', |
|
'l', 'd', 'i', 'e', 'b', 't', 'lOCode', |
|
'lOComment', 'lOBlank', 'locCodeAndComment', |
|
'uniq_Op', 'uniq_Opnd', 'total_Op', |
|
'total_Opnd', 'branchCount']) |
|
|
|
|
|
prediction = model.predict_proba(input_data)[0][1] |
|
|
|
return f"Defect Probability: {prediction:.2%}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_defects, |
|
inputs=[ |
|
gr.Slider(minimum=1, maximum=1000, value=100, |
|
label="Lines of Code", info="Total number of code lines"), |
|
gr.Slider(minimum=1, maximum=50, value=5, |
|
label="Code Complexity", info="How complex is your code"), |
|
gr.Slider(minimum=1, maximum=100, value=20, |
|
label="Unique Operators", info="Number of different operators (+, -, *, etc.)"), |
|
gr.Slider(minimum=1, maximum=100, value=20, |
|
label="Unique Operands", info="Number of different variables and constants"), |
|
gr.Slider(minimum=0, maximum=500, value=50, |
|
label="Comment Lines", info="Number of comment lines"), |
|
], |
|
outputs="text", |
|
title="Software Defect Predictor", |
|
description="Predict the probability of software defects based on code metrics", |
|
theme="soft" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |