Mask_detection / app.py
AlshimaaGamalAlsaied
commit
8e4ec6f
raw
history blame
4.35 kB
import gradio as gr
import torch
import yolov5
# Images
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/image3.jpg', 'image3.jpg')
def yolov5_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv5 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov5.load(model_path, device="cpu")
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
inputs = [
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(["yolov5s.pt", "alshimaa/yolo5_epoch100"], label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "YOLOv5"
description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
examples = [['zidane.jpg', 'yolov5s.pt', 640, 0.25, 0.45], ['image3.jpg', 'yolov5s.pt', 640, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov5_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=True,
live=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)
# import gradio as gr
# import torch
# import yolov5
# import subprocess
# import tempfile
# import time
# from pathlib import Path
# import uuid
# import cv2
# import gradio as gr
# # Images
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
# def image_fn(
# image: gr.inputs.Image = None,
# model_path: gr.inputs.Dropdown = None,
# image_size: gr.inputs.Slider = 640,
# conf_threshold: gr.inputs.Slider = 0.25,
# iou_threshold: gr.inputs.Slider = 0.45,
# ):
# """
# YOLOv5 inference function
# Args:
# image: Input image
# model_path: Path to the model
# image_size: Image size
# conf_threshold: Confidence threshold
# iou_threshold: IOU threshold
# Returns:
# Rendered image
# """
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
# model.conf = conf_threshold
# model.iou = iou_threshold
# results = model([image], size=image_size)
# return results.render()[0]
# demo_app = gr.Interface(
# fn=image_fn,
# inputs=[
# gr.inputs.Image(type="pil", label="Input Image"),
# gr.inputs.Dropdown(
# choices=[
# "alshimaa/yolo5_epoch100",
# #"kadirnar/yolov7-v0.1",
# ],
# default="alshimaa/yolo5_epoch100",
# label="Model",
# )
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
# ],
# outputs=gr.outputs.Image(type="filepath", label="Output Image"),
# title="Object Detector: Identify People Without Mask",
# examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
# cache_examples=True,
# live=True,
# theme='huggingface',
# )
# demo_app.launch(debug=True, enable_queue=True)