import gradio as gr import torch import yolov5 # Images torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/image3.jpg', 'image3.jpg') def yolov5_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv5 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = yolov5.load(model_path, device="cpu") model.conf = conf_threshold model.iou = iou_threshold results = model([image], size=image_size) return results.render()[0] inputs = [ gr.inputs.Image(type="pil", label="Input Image"), gr.inputs.Dropdown(["yolov5s.pt", "yolov5l.pt", "yolov5x.pt"], label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YOLOv5" description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model." examples = [['zidane.jpg', 'yolov5s.pt', 640, 0.25, 0.45], ['image3.jpg', 'yolov5s.pt', 640, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov5_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, live=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True) # import gradio as gr # import torch # import yolov5 # import subprocess # import tempfile # import time # from pathlib import Path # import uuid # import cv2 # import gradio as gr # # Images # #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') # #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') # def image_fn( # image: gr.inputs.Image = None, # model_path: gr.inputs.Dropdown = None, # image_size: gr.inputs.Slider = 640, # conf_threshold: gr.inputs.Slider = 0.25, # iou_threshold: gr.inputs.Slider = 0.45, # ): # """ # YOLOv5 inference function # Args: # image: Input image # model_path: Path to the model # image_size: Image size # conf_threshold: Confidence threshold # iou_threshold: IOU threshold # Returns: # Rendered image # """ # model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False) # model.conf = conf_threshold # model.iou = iou_threshold # results = model([image], size=image_size) # return results.render()[0] # demo_app = gr.Interface( # fn=image_fn, # inputs=[ # gr.inputs.Image(type="pil", label="Input Image"), # gr.inputs.Dropdown( # choices=[ # "alshimaa/yolo5_epoch100", # #"kadirnar/yolov7-v0.1", # ], # default="alshimaa/yolo5_epoch100", # label="Model", # ) # #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size") # #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), # #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold") # ], # outputs=gr.outputs.Image(type="filepath", label="Output Image"), # title="Object Detector: Identify People Without Mask", # examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]], # cache_examples=True, # live=True, # theme='huggingface', # ) # demo_app.launch(debug=True, enable_queue=True)